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Quantum generative learning offers immense potential as the natural machine learning 
application of quantum computers, but it faces several trainability challenges. However, 
certain restricted and structured quantum generative models have a potential to overcome 
these trainability issues, through the efficient classical estimation of the expectation values 
and gradients of local observables. These estimates can be used to train the quantum model 
completely classically, thus also eliminating the need for quantum gradient computation. 
Furthermore, some classes of quantum models enable this type of classical training, while 
requiring a quantum device for efficient sampling [1,2]. 

The classical trainability of such models builds on the results of Ref. [3], where the 
authors showed that the squared maximum mean discrepancy loss function can be 
reformulated using expected values, instead of samples. The training framework of Ref. [4] is 
formulated around this loss function and introduces the class of parametrized instantaneous 
quantum polynomial time (IQP) circuits, as classically trainable generative models that are 
also classically hard to sample from in the final inference step. Similarly to IQP circuits, the 
Fermion Sampling quantum advantage scheme [2] also permits the classical estimation of 
local expectation values, while showing rigorous classical hardness in sampling. Furthermore, 
these circuits exhibit favourable trainability properties through the lack of barren plateaus [5]. 

In this work, we introduce fermionic Born machines as classically trainable quantum 
generative models and the corresponding efficient training scheme. The model consists of 
parametrized magic states and fermionic linear optical (FLO) transformations with trainable 
weights. The training algorithm relies on the decomposition of the parametrized magic states 
into Gaussian operators, enabling efficient expectation value estimation. Finally, through the 
Jordan-Wigner transformation, these FLO circuits can be directly implemented on qubit-based 
architectures to sample from the output probability distribution in the inference stage. 

Through a series of numerical experiments, we showcase the performance of our model 
and training framework. We start by considering small-scale examples to show that this model 
can actually approach the target probability distribution, as measured in the total variational 
distance, not only match its finite moments. Furthermore, we demonstrate the scalability of 
our approach on larger problems of 100 qubits and beyond. 
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