
1. Kvantum-számı́táselmélet feladatsor (Richard Józsa feladatai)
(Beadási határidő: 2014.03.26. www.cs.elte.hu/~pal/QC e-mail: pal@cs.elte.hu)4 Exercises

(1) (Quantum teleportation) Write |ψ〉 = 1√
2
(|00〉 + |11〉) and let |α〉 = a |0〉 + b |1〉 be a

general 1-qubit state. Subscripts will denote qubit positions labelled from left to right, in a
multi-qubit state.
(a) Write |A〉123 = |α〉1 |ψ〉23 in the computational basis of three qubits and hence compute
|B〉123 = (H1 ⊗ I23)(CX12 ⊗ I3) |A〉123.
(b) Suppose we perform a standard quantum measurement on qubits 1 and 2 of |B〉. Show
that the four possible outcomes ij = 00, 01, 10, 11 are always equiprobable and compute the
post-measurement state in each case.
(c) Show that in each case the post-measurement state in slot 3 is a unitary transform of |α〉
(independent of a and b) and identify the corresponding unitary matrix Uij for each possible
outcome ij.
Remark: in quantum teleportation Alice holds qubits 1 and 2 while Bob, distantly separated
in space, holds qubit 3. So Alice, by applying the local operations H1, CX12 and local mea-
surements, can faithfully transfer the state of qubit 1 to Bob (even if she does not know its
identity), at the communication expense of sending him only two classical bits ij (so he can
correct the unitary “error” Uij).

(2) (Basic entanglement) Prove that the state a |00〉+ b |01〉+ c |10〉+ d |11〉 is entangled iff
ad− bc 6= 0. Deduce that the state |ψ〉 = 1

2(|00〉+ |01〉+ |10〉+ (−1)k |11〉) is entangled if k = 1
and unentangled if k = 0. Express the latter case explicitly as a product state. How can |ψ〉
(for k = 0, 1) be manufactured starting from |00〉 and applying only gates from those listed in
section 3 above?

(3) (No cloning of quantum states) We routinely copy classical data in everyday life e.g.
for a single bit value b = 0 or 1, show that the classical CNOT gate (which operates just like
the quantum CX gate on basis states viz. (b, c) 7→ (b, b ⊕ c) for bits b, c) when acting on the
2-bit pair (b, 0), will copy b into the second slot i.e. we get (b, b).
(i) Consider now the quantum CNOT gate acting on the 2-qubit state |ψ〉 |0〉 where |ψ〉 =
α |0〉+ β |1〉 is a general qubit state. Will we now get a copy of |ψ〉 in the second register? i.e.
do we get |ψ〉 |ψ〉?
(ii) Consider any process which purports to clone an arbitrary input qubit state. Any such
process has the following form. The input is |ψ〉 |0〉 . . . |0〉 where |ψ〉 is any qubit state and
|0〉 . . . |0〉 are any required number of “working space” qubits all in state |0〉. The output is
|ψ〉 |ψ〉 |Aψ〉 i.e. we get two copies of |ψ〉 together with (possibly) some further ψ-dependent
state |Aψ〉. Prove that no such process can exist within the framework of quantum theory i.e.
“quantum states cannot be cloned”. (Hint: think about unitarity).

(4) (Quantum nonlocality) Consider the 2-qubit state |ψ〉 = 1√
2
(|00〉 + |11〉). We imagine

that the two qubits are separated at great spatial distance and held by Alice (A) and Bob (B)
respectively, who can then apply quantum operations (unitary gates and measurements) only
to the qubit they hold. Introduce the 1-qubit gate (“rotation by θ”)

U(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

(a) Suppose A applies U(α) and B applies U(β). Show that the resulting state is

|ψαβ〉 = 1√
2

(cos(α− β) |00〉 − sin(α− β) |01〉+ sin(α− β) |10〉+ cos(α− β) |11〉) .

Deduce that for any choice of α and β, if we measure either one of the qubits of |ψαβ〉 in the
computational basis we will get output 0 or 1 with equal probabilities of half. Show that this
remains true even if the other party has (unbeknown to us) already made the measurement
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Furthermore to solve systems of linear equations over Bn we can use, for example, the standard
Gaussian elimination method (calculating with the algebra of the field Z2).

(c)∗ Show that if (n−1) bitstrings y are chosen uniformly randomly and independently satisfying
y · ξ = 0 then they will be linearly independent with probability at least 1/4.
(d) Let 0 < p < 1 be any chosen constant probability. Show that K = O(n) runs of the
algorithm in (a) and (b) will suffice to determine ξ with probability at least p. Writing K = kn
give an expression for k as a function of p.
(e) The above gives a bounded error algorithm for finding the period ξ assuming that the given
function was in fact periodic. Show how this may be used to solve Simon’s problem with O(n)
query complexity (and with bounded error).

(4) (Entanglement necessary in quantum computation)
Consider a quantum computation, given as a polynomial-sized circuit family {C1, C2, . . . , Cn, . . .}
where each Cn comprises gates from the universal set {H,S,CX} (where S denotes the π/8
phase gate) and suppose that this computation solves a decision problem A in BQP.
Suppose further that for any input x ∈ Bn to Cn (for any n), at every stage of the process, the
quantum state is unentangled i.e. it is a product state of all the qubits involved.
Show that then the problem A is also in BPP i.e. if no entanglement is ever present in a quan-
tum computation, then it cannot provide any computational benefit over classical computation
(up to a poly overhead in time).

(5) (Making 2-qubit states)
(a) Let {|α0〉 , |α1〉} be any orthonormal basis for a qubit. Show that there is a 1-qubit unitary
gate U with U |0〉 = |α0〉 and U |1〉 = |α1〉.

(b) Let |ψ〉 be any 2-qubit state. Is it possible to manufacture |ψ〉 from |0〉 |0〉 by the application
of a circuit comprising only 1-qubit gates (which are otherwise unrestricted)? Give a reason for
your answer.

(c) The Schmidt decomposition theorem for 2-qubit states is the following:
Theorem: if |ψ〉 is any 2-qubit state then there are orthonormal bases {|α0〉 , |α1〉} and {|β0〉 , |β1〉}
and non-negative real numbers λ and µ such that |ψ〉 = λ |α0〉 |β0〉+ µ |α1〉 |β1〉. �
(For a simple proof, let |ψ〉 =

∑
ij aij |ij〉 be any state and just replace the matrix [aij ] by its

singular value decomposition).
Assuming this theorem is true, prove that any 2-qubit state can be manufactured from |0〉 |0〉
by application of a circuit comprising only 1-qubit gates and a single use of the 2-qubit CX
gate.

(6)* (Hidden translation problem)
Suppose you are given two bijective functions f0 : Bn → Bn and f1 : Bn → Bn as quantum
oracles (in the usual way). It is promised that there is a nonzero string u ∈ Bn such that for
all x we have f0(x) = f1(x ⊕ u). Give a quantum algorithm that finds u with bounded error
probability and makes only O(n) queries to the oracles.

(7) (Shor’s algorithm)
Suppose we wish to factor N = 85 and we have chosen a = 3. Show that a and N are coprime
and compute the period r of f(x) = ax modN . Using r carry out the (classical) steps of the
quantum factoring algorithm that lead to a factor of N = 85.
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(A szorzás, összeadás, stb. alapműveletek természetesen mind polinomiális időben kiszámı́thatóak.

Vagyis igazából azt kell megmutatni, hogy a folyamat jól szimulálható összesen polinomiális sok

alapművelet elvégzésével – és közben végig elég polinomiális (bit)méretű számokkal számolni.)

QUANTUM COMPUTATION – EXERCISE SHEET 1
Richard Jozsa rj310@cam.ac.uk (January 2013)

(1) (Bernstein-Vazirani problem)
For n-bit strings x = x1 . . . xn and a = a1 . . . an in Bn we have the sum x⊕ a which is an n-bit
string, and now introduce the 1-bit “dot product” x · a = x1a1 ⊕ x2a2 ⊕ . . .⊕ xnan.
For any fixed n-bit string a = a1 . . . an with a 6= 00 . . . 0, consider the function fa : Bn → B1

given by
fa(x1, . . . , xn) = x · a (1)

(a) Show that for any a 6= 00 . . . 0, fa is a balanced function i.e. fa has value 0 (respectively 1)
on exactly half of its inputs x.
(b) Given a classical black box that computes fa describe a classical deterministic algorithm
that will identify the string a = a1 . . . an on which fa is based. Show that any such black box
classical algorithm must have query complexity at least n.

Now for any n let Hn = H⊗ . . .⊗H be the application of H to each qubit of a row of n qubits.
Show that

H |x〉 =

1∑

y=0

(−1)xy |y〉 Hn |a〉 =
1√
2n

∑

all y

(−1)a·y |y〉

(c) (the Bernstein–Vazirani problem)
For each a consider the function fa which is a balanced function if a 6= 00 . . . 0 (as shown above).
Show that the DJ algorithm will perfectly distinguish and identify the 2n−1 balanced functions
fa (for a 6= 00 . . . 0) with only one query to the function – in fact show that the n bit output of
the algorithm gives the string a with certainty for these special balanced functions.

(2) (Classical complexity – integer exponentiation mod N)
In Shor’s algorithm we need to compute the exponentiation of integers mod N and it is impor-
tant to know that this can be done efficiently. To compute say 3k modN (for 0 ≤ k ≤ N − 1)
we could multiply 3 together k times. Show that this is not a polynomial time computation
(i.e. not poly time in n = logN , the largest possible input size for k).
Devise an algorithm that does run in poly(n) time. (Hint: consider repeated squaring).
You may assume that multiplication mod N of a pair of integers with n digits may be done in
O(n2) time.
Generalise to a poly time computation of kk21 mod N for 0 ≤ k1, k2 ≤ N − 1 showing that it
may be computed in O(n3) time.

(3) (Simon’s algorithm)
Suppose f : Bn → Bn is a Boolean function with (nonzero) Boolean period ξ ∈ Bn i.e. f(x) =
f(y) iff y = x⊕ ξ. Consider 2n qubits with the first (resp. last) n comprising the input (resp.
output) register for a quantum oracle Uf computing f i.e. Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for n-bit
strings x and y.
(a) With all qubits starting in state |0〉 apply H to each qubit of the input register, query Uf
and then measure the output register. Write down the generic form of the n-qubit state |α〉 of
the input register, obtained after the measurement. Suppose we were to measure |α〉. Would
the result provide any information about the period ξ?
(b) Having obtained |α〉 as in (a), apply H to each qubit to obtain a state denoted |β〉. Show
that if we measure |β〉 then the n-bit outcome is a uniformly random n-bit string y satisfying
ξ · y = 0 (so any such y is obtained with probability 1/2n−1).

Now we can run this algorithm repeatedly, each time independently obtaining another string y
satisfying ξ · y = 0. Recall that Bn = (Z2)

n is a vector space over the field Z2. If y1, . . . , ys are
s linearly independent vectors (bitstrings) then their span contains 2s of the 2n vectors in Bn.
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