1. Kvantum-szamitiselmélet feladatsor (Richard Jézsa feladatai)
(Beadasi hataridé: 2014.03.26. www.cs.elte.hu/~pal/QC  e-mail: pal@cs.elte.hu)

(1) (Quantum teleportation) Write |¢)) = %(\00} + |11)) and let |a) = a|0) +b|1) be a
general 1-qubit state. Subscripts will denote qubit positions labelled from left to right, in a
multi-qubit state.

(a) Write [A); 93 = |a); [1)95 in the computational basis of three qubits and hence compute
|B) 153 = (H1 @ I23)(CX12 @ I3) [A) 5.

(b) Suppose we perform a standard quantum measurement on qubits 1 and 2 of |B). Show
that the four possible outcomes 5 = 00,01,10,11 are always equiprobable and compute the
post-measurement state in each case.

(c) Show that in each case the post-measurement state in slot 3 is a unitary transform of |a)
(independent of a and b) and identify the corresponding unitary matrix U;; for each possible
outcome 7j.

Remark: in quantum teleportation Alice holds qubits 1 and 2 while Bob, distantly separated
in space, holds qubit 3. So Alice, by applying the local operations Hi,C' X2 and local mea-
surements, can faithfully transfer the state of qubit 1 to Bob (even if she does not know its
identity), at the communication expense of sending him only two classical bits ij (so he can
correct the unitary “error” Uj;).

(2) (Basic entanglement) Prove that the state a [00) +b|01) 4+ ¢|10) + d |11) is entangled iff
ad — be # 0. Deduce that the state |©) = 2(|00) +|01) +[10) + (—1)* |11)) is entangled if k =1

(a) Let {|ap) , |a1)} be any orthonormal basis for a qubit. Show that there is a 1-qubit unitary
gate U with U |0) = |ap) and U |1) = |aq).

(b) Let |1) be any 2-qubit state. Is it possible to manufacture |¢) from |0) |0) by the application
of a circuit comprising only 1-qubit gates (which are otherwise unrestricted)? Give a reason for
your answer.

(¢) The Schmidt decomposition theorem for 2-qubit states is the following:

Theorem: if [1) is any 2-qubit state then there are orthonormal bases {|ag) , |a1)} and {|SBo) , |51)}
and non-negative real numbers A and p such that |[¢)) = A|ao) |Bo) + w]a1) |f1). O

(For a simple proof, let [¢)) = 3, a;; |ij) be any state and just replace the matrix [a;;] by its
singular value decomposition).

Assuming this theorem is true, prove that any 2-qubit state can be manufactured from |0) |0)
by application of a circuit comprising only 1-qubit gates and a single use of the 2-qubit CX

(3) (No cloning of quantum states) We routinely copy classical data in everyday life e.g.
for a single bit value b = 0 or 1, show that the classical CNOT gate (which operates just like
the quantum C'X gate on basis states viz. (b,c) — (b,b @ c) for bits b, ¢) when acting on the
2-bit pair (b,0), will copy b into the second slot i.e. we get (b,b).

(i) Consider now the quantum CNOT gate acting on the 2-qubit state |¢)|0) where |¢)) =
a|0) + B |1) is a general qubit state. Will we now get a copy of [1) in the second register? i.e.
do we get [} |15)?

(ii) Consider any process which purports to clone an arbitrary input qubit state. Any such
process has the following form. The input is |¢)[0)...]0) where |¢) is any qubit state and
|0)...|0) are any required number of “working space” qubits all in state |0). The output is
) |1) |Ay) i.e. we get two copies of |¢) together with (possibly) some further 1-dependent
state |Ay). Prove that no such process can exist within the framework of quantum theory i.e.
“quantum states cannot be cloned”. (Hint: think about unitarity).
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(4) (Entanglement necessary in quantum computation)
Consider a quantum computation, given as a polynomial-sized circuit family {C}, Ca,...,C,, ...}
where each C), comprises gates from the universal set {H,S,CX} (where S denotes the /8
phase gate) and suppose that this computation solves a decision problem 4 in BQP.
Suppose further that for any input « € B, to C,, (for any n), at every stage of the process, the
quantum state is unentangled i.e. it is a product state of all the qubits involved.
Show that then the problem A is also in BPP i.e. if no entanglement is ever present in a quan-
tum computation, then it cannot provide any computational benefit over classical computation
(up to a poly overhead in time).

(A szorzas, 6sszeadds, stb. alapmiiveletek természetesen mind polinomialis idében kiszamithatéak.
Vagyis igazabdl azt kell megmutatni, hogy a folyamat jol szimulalhaté 6sszesen polinomialis sok
alapmiivelet elvégzésével — és kdzben végig elég polinomidlis (bit)méretli szamokkal szamolni.)

(5) (Bernstein-Vazirani problem)
For n-bit strings t =x1...x, and a = ay ... a, in B, we have the sum x @& a which is an n-bit
string, and now introduce the 1-bit “dot product” = -a = x1a1 ® 202 D ... D Thay.
For any fixed n-bit string a = ay ...a, with a # 00...0, consider the function f, : B, — B;
given by

falz1,...,zp) =2 -a (1)

(a) Show that for any a # 00...0, f, is a balanced function i.e. f, has value 0 (respectively 1)
on exactly half of its inputs z.

(b) Given a classical black box that computes f, describe a classical deterministic algorithm
that will identify the string a = a; ...a, on which f, is based. Show that any such black box
classical algorithm must have query complexity at least n.

Now for any n let H, = H®...® H be the application of H to each qubit of a row of n qubits.

Show that .

Hir) =S (07 H, o
ygo(\/i ly) |a) \/27% ly)

(¢) (the Bernstein—Vazirani problem)

For each a consider the function f, which is a balanced function if @ # 00...0 (as shown above).
Show that the DJ algorithm will perfectly distinguish and identify the 2 —1 balanced functions
fa (for a # 00...0) with only one query to the function — in fact show that the n bit output of
the algorithm gives the string a with certainty for these special balanced functions.



