1. Kvantum-számításelmélet feladatsor (Richard Józsa feladatai)
Can kirkel (Santa)

1. IN ART EXAMPLE EXAMPLE CONSULTER (CALCULATE OF THE ALGEBRA OF THE ALG

(1) (Quantum teleportation) Write $|\psi\rangle = \frac{1}{\sqrt{2}}$ (1) (Quantum teleportation) Write $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ and let $|\alpha\rangle = a|0\rangle + b|1\rangle$ be a general 1-qubit state. Subscripts will denote qubit positions labelled from left to right, in a multi-qubit state. multi-qubit state. (1) (Quantum teleportation) Write $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ and let $|\alpha\rangle = a|0\rangle + b|1\rangle$ be a $\frac{d}{dx}$ and $\frac{d}{dx}$ because $\frac{d}{dx}$ and $\frac{d}{dx}$ and $\frac{d}{dx}$ is $\frac{d}{dx}$ and $\frac{d}{dx}$

(a) Write $|A\rangle_{123} = |\alpha\rangle_1 |\psi\rangle_{23}$ in the computational basis of three qubits and hence compute $|B\rangle_{123} = (H_1 \otimes I_{23})(CX_{12} \otimes I_3) |A\rangle_{123}.$

(b) Suppose we perform a standard quantum measurement on qubits 1 and 2 of $|B\rangle$. Show that the four possible outcomes $ij = 00, 01, 10, 11$ are always equiprobable and compute the post-measurement state in each case.

(c) Show that in each case the post-measurement state in slot 3 is a unitary transform of $|\alpha\rangle$ (independent of a and b) and identify the corresponding unitary matrix U_{ij} for each possible $\frac{1}{\text{outcome}}$ ij. (1) outcome i.e. μ .
 μ = μ = μ = μ = μ + μ = μ + μ = μ =

outcome ij .
Remark: in quantum teleportation Alice holds qubits 1 and 2 while Bob, distantly separated in space, holds qubit 3. So Alice, by applying the local operations H_1, CX_{12} and local measurements, can faithfully transfer the state of qubit 1 to Bob (even if she does not know its
identity) at the communication sureme of sending him splu two classical kits is (so he can identity), at the communication expense of sending him only *two classical bits ij* (so he can correct the unitary "error" U_{ij}). *Remark*: in quantum teleportation Alice holds qubits 1 and 2 while Bob, distantly s n_{F} and n_{F} is a subscript of the model of n_{F} and n_{F} will boot, distantly separated surements, can raitmuny tr laentity), at the communication experience.

(2) (Basic entanglement) Prove that the state $a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$ is entangled if $ad-bc \neq 0$. Deduce that the state $|\varphi\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + (-1)^k |11\rangle)$ is entangled if $k = 1$

(a) Let $\{|\alpha_0\rangle, |\alpha_1\rangle\}$ be any orthonormal basis for a qubit. Show that there is a 1-qubit unitary (for the U with U |0) = $|\alpha_0\rangle$ and U |1) = $|\alpha_1\rangle$. gate U with $U |0\rangle = |\alpha_0\rangle$ and $U |1\rangle = |\alpha_1\rangle$. (a) Let $\left[\alpha_0\right]$, $\left[\alpha_1\right]$ be any orthonormal basis for a quote. Show that there is a 1 quote unitary α_1

of a circuit comprising only 1-qubit gates (which are otherwise unrestricted)? Give a reason for α your answer. of a circuit comprising only 1-qubit gates (which are otherwise unrestricted)? Give a reason for
vour answer t_{max} states viz. (b, c) $\frac{1}{2}$ (b) Let $|\psi\rangle$ be any 2-qubit state. Is it possible to manufacture $|\psi\rangle$ from $|0\rangle |0\rangle$ by the application

the quantum CX gate on basis states viz. (b, c) 7→ (b, b ⊕ c) for bits b, c) when acting on the (c) The Schmidt decomposition theorem for 2-qubit states is the following: identity), at the communication expense of sending him only two classical bits ij (so he can

Theorem: if $|\psi\rangle$ is any 2-qubit state then there are orthonormal bases $\{|\alpha_0\rangle, |\alpha_1\rangle\}$ and $\{|\beta_0\rangle, |\beta_1\rangle\}$ and non-negative real numbers λ and μ such that $|\psi\rangle = \lambda |\alpha_0\rangle |\beta_0\rangle + \mu |\alpha_1\rangle |\beta_1\rangle$.

(For a simple proof, let $|\psi\rangle = \sum_{ij} a_{ij} |ij\rangle$ be any state and just replace the matrix $[a_{ij}]$ by its singular value decomposition).

Assuming this theorem is true, prove that any 2-qubit state can be manufactured from $|0\rangle |0\rangle$
by application of a circuit comprising only 1-qubit gates and a *single* use of the 2-qubit CX by application of a circuit comprising only 1-qubit gates and a *single* use of the 2-qubit CX

(3) (No cloning of quantum states) We routinely copy classical data in everyday life e.g. for a single bit value $b = 0$ or 1, show that the classical CNOT gate (which operates just like the quantum CX gate on basis states viz $(hc) \mapsto (h h \oplus c)$ for b 2-bit pair $(b, 0)$, will copy b into the second slot i.e. we get (b, b) .
(i) Consider now the quantum CNOT gate acting on the 2-qubit state $|y_0\rangle$ where $|y_0\rangle =$ 2-bit pair $(b, 0)$, will copy b into the second slot i.e. we get (b, b) . the quantum CX gate on basis states viz. $(b, c) \mapsto (b, b \oplus c)$ for bits b, c) when acting on the

(1) Consider how the quantum Civer gave acting on the 2 qubit state $|\psi/\psi\rangle$ where $|\psi\rangle =$ $\alpha|0\rangle + \beta|1\rangle$ is a general qubit state. Will we now get a copy of $|\psi\rangle$ in the second register? i.e. 2-bit pair (0,0), will copy 0 into the second slot i.e. we get $(0, 0)$.

(i) Consider now the quantum CNOT gate acting on the 2-qubit state $|\psi\rangle |0\rangle$ where $|\psi\rangle =$

(a) $|\psi\rangle |0\rangle + |\psi\rangle |1\rangle$ is a general subit state. Will do we get $|\psi\rangle |\psi\rangle$?

(ii) Consider *any* process which purports to clone an arbitrary input qubit state. Any such The input is $|\psi\rangle|0\rangle...|0\rangle$
or of "working space" cub $|0\rangle \ldots |0\rangle$ are any required number of "working space" qubits all in state $|0\rangle$. The output is state $|A_{\psi}\rangle$. Prove that no such process can exist within the framework of quantum theory i.e. "quantum states cannot be cloned". (Hint: think about unitarity). process has the following form. The input is $|\psi\rangle|0\rangle...|0\rangle$ where $|\psi\rangle$ is any qubit state and $|0\rangle$. $|\psi\rangle\ket{\psi}\ket{A_\psi}$ i.e. we get two copies of $|\psi\rangle$ together with (possibly) some further ψ -dependent

(4) (Entanglement necessary in quantum computation)

Consider a quantum computation, given as a polynomial-sized circuit family $\{C_1, C_2, \ldots, C_n, \ldots\}$ where each C_n comprises gates from the universal set $\{H, S, CX\}$ (where S denotes the $\pi/8$ phase gate) and suppose that this computation solves a decision problem A in BQP . Suppose further that for any input $x \in B_n$ to C_n (for any n), at every stage of the process, the

quantum state is unentangled i.e. it is a product state of all the qubits involved. Show that then the problem A is also in **BPP** i.e. if no entanglement is ever present in a quan-

tum computation, then it cannot provide any computational benefit over classical computation (up to a poly overhead in time).

Vagyis igazából azt kell megmutatni, hogy a folyamat jól szimulálható összesen polinomiális sok (a) let galaxest als non ineglitateum, negli a teli amat for shimalamate esseccin permemiant ser
alanművelet elvégzésével – és közben végig elég nolinomiális (bit)méretű számokkal számolni alapművelet elvégzésével – és közben végig elég polinomiális (bit)méretű számokkal számolni.) (A szorzás, összeadás, stb. alapműveletek természetesen mind polinomiális időben kiszámíthatóak.

(5) (Bernstein-Vazirani problem)

For *n*-bit strings $x = x_1 \dots x_n$ and $a = a_1 \dots a_n$ in B_n we have the sum $x \oplus a$ which is an *n*-bit string, and now introduce the 1-bit "dot product" $x \cdot a = x_1 a_1 \oplus x_2 a_2 \oplus \ldots \oplus x_n a_n$.

For any fixed *n*-bit string $a = a_1 \dots a_n$ with $a \neq 00 \dots 0$, consider the function $f_a : B_n \to B_1$
given by given by

$$
f_a(x_1,\ldots,x_n)=x\cdot a\tag{1}
$$

 $\frac{1}{2}$ and $\frac{1}{2}$ a (a) Show that for any $a \neq 00...0$, f_a is a balanced function i.e. f_a has value 0 (respectively 1) on exactly half of its inputs x .

(b) Given a classical black box that computes f_a describe a classical deterministic algorithm that will identify the string $a = a_1 \ldots a_n$ on which f_a is based. Show that any such black box classical algorithm must have query complexity at least n .

Now for any n let $H_n = H \otimes \ldots \otimes H$ be the application of H to each qubit of a row of n qubits. $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ Show that

$$
H\ket{x} = \sum_{y=0}^{1} \frac{(-1)^{xy}}{\sqrt{2}} \ket{y} \quad H_n\ket{a} = \frac{1}{\sqrt{2^n}} \sum_{\text{all } y} (-1)^{a \cdot y} \ket{y}
$$

(c) (the Bernstein–Vazirani problem)

For each a consider the function f_a which is a balanced function if $a \neq 00...0$ (as shown above). Show that the DJ algorithm will perfectly distinguish and identify the $2ⁿ - 1$ balanced functions f_a (for $a \neq 00...0$) with only *one* query to the function – in fact show that the *n* bit output of the algorithm gives the string a with certainty for these special balanced functions.