Andras Gilyén

Alfréd Rényi Institute of Mathematics
Budapest, Hungary

Quantum Computing Summer School, Physikzentrum Bad Honnef, Germany
2022 August 14-19

Quantum algorithm design

Quantum algorithm design

Many quantum algorithms have a common structure!

1/20

A bird’s eye view on quantum linear algebra

2/20

A bird’s eye view on quantum linear algebra
Motivating example - the quantum matrix inversion (HHL) algorithm
We want to solve large systems of linear equations

Ax = b.

A quantum computer can nicely work with exponential sized matrices!
Given |b), we can prepare a solution «< A~"|b).

2/20

A bird’s eye view on quantum linear algebra
Motivating example - the quantum matrix inversion (HHL) algorithm
We want to solve large systems of linear equations

Ax = b.

A quantum computer can nicely work with exponential sized matrices!
Given |b), we can prepare a solution «< A~"|b).

Matrix arithmetic on a quantum computer using block-encoding
Input matrix: A; Implementation: U :[A]; Algorithm: U’ :[fa)]

In HHL f(x) = 1. Use Singular Value Transformation to approximate it!

2/20

A bird’s eye view on quantum linear algebra

Motivating example - the quantum matrix inversion (HHL) algorithm
We want to solve large systems of linear equations

Ax = b.
A quantum computer can nicely work with exponential sized matrices!
Given |b), we can prepare a solution «< A~"|b).

Matrix arithmetic on a quantum computer using block-encoding

Input matrix: A; Implementation: U :[A]; Algorithm: U’ :[fa)]

In HHL f(x) = 1. Use Singular Value Transformation to approximate it!
More examples
> Optimal Hamiltonian simulation [Low et al.], quantum walks [Szegedy]

> Fixed point [Yoder et al.] and oblivious amplitude amplification [Berry et al.]
> HHL, regression [Chakraborty et al.], SDPs & LPs [Brandao et al.], ML [Kerendis et al.]

20

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[f‘ :] — A=(OFe)U(0Y¥sl).

/20

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[f‘ :] — A=(OFe)U(0Y¥sl).

Any complex matrix A with operator norm ||A|| < 1 can be block-encoded.

20

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[A] — A=(OFe)U(0Y¥sl).
Any complex matrix A with operator norm ||A|| < 1 can be block-encoded.

One can efficiently construct block-encodings of

/20

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[f‘ :] — A=(OFe)U(0Y¥sl).

Any complex matrix A with operator norm ||A|| < 1 can be block-encoded.

One can efficiently construct block-encodings of
» an efficiently implementable unitary U,

20

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[f‘ :] — A=(OFe)U(0Y¥sl).

Any complex matrix A with operator norm ||A|| < 1 can be block-encoded.

One can efficiently construct block-encodings of
» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,

20

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[f‘ :] — A=(OFe)U(0Y¥sl).

Any complex matrix A with operator norm ||A|| < 1 can be block-encoded.

One can efficiently construct block-encodings of
> an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,

20

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[f‘ :] — A=(OFe)U(0Y¥sl).

Any complex matrix A with operator norm ||A|| < 1 can be block-encoded.

One can efficiently construct block-encodings of
» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,
> a density operator p given a unitary preparing its purification.

20

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[f‘ :] — A=(OFe)U(0Y¥sl).

Any complex matrix A with operator norm ||A|| < 1 can be block-encoded.

One can efficiently construct block-encodings of
» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,
> a density operator p given a unitary preparing its purification.
» a POVM operator M given we can sample from the rand.var.: Tr(pM),

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices.

4/20

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows"

4/20

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)* . .
R: |0)[0)]iy — 10) Z %ll)llﬂ + [1)|i)|garbage),
K

/20

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z ull)llﬂ + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

/20

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z uIl)lk) + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:

(0KOKIRTClO)I0)Ij)

20

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z uIl)lk) + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — |0>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:

(OKOKIIRTCIOO)) = (RIO)Ii))" - (CI0YI0)1j))

20

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

R:10)10)li) — I0>Z (\/_ liblk) + [1)li)lgarbage),

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:

3

;
Ai)* . A
(OKOIIIRT Cl0Y/0)lj) = (RI0NO0YIN)' - (CIOYOYI))) = [Z (|'>|k>) [Z J |f>|!>]
K 7

S

B

20

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z ull)lk) + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:

5
5

{j

Vs

&

;

k).) Ajj

(OKOIIIRT Cl0Y/0)lj) = (RI0NO0YIN)' - (CIOYOYI))) = [Z () |'>|k>) [Z |5>|!>] = ?]
K 7

20

Efficient matrix arithmetics

5/20

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.

5/20

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Linear combination of (non-)unitary matrices [Childs and Wiebe ’12, Berry et al. ’15]
Suppose that U = Y;1iXil® U;, and P : |0) — >.; +/pili) for p; € [0, 1].

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Linear combination of (non-)unitary matrices [Childs and Wiebe ’12, Berry et al. ’15]

Suppose that U = Y;1iXil® U;, and P : |0) — >.; +/pili) for p; € [0, 1].
Then (PT ® I)U(P ® I) is a block-encoding of 3; p;Ui.

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Linear combination of (non-)unitary matrices [Childs and Wiebe ’12, Berry et al. ’15]

Suppose that U = Y;1iXil® U;, and P : |0) — >.; +/pili) for p; € [0, 1].
Then (PT ® I)U(P ® I) is a block-encoding of 3; p;Ui.
In particular if (0] ® I)U;(|0) ® I) = Aj, then it is a block-encoding of

Z PiA;.
i

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map.

6/20

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

M

6/20

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Us :[i Plsi)lwiXvil

6/20

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Us :[i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Uy = [i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

Alternating phase modulation sequence Uy :=

/20

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT

Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Uy = [i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

Alternating phase modulation sequence Uy :=

Simmilar result holds for even polynomials.

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VXt WT,

7/20

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

7/20

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

¥

_ —05 05 1

7/20

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

¥

05 1

x|= -

7/20

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

¥

05 1

x|= +

7/20

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

¥

05 1

x|= +

Degree / complexity: O(K log (%))

7/20

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators.

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: U:[bl o]; Walk : W”:[Tan(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)

/20

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: U:[bl o]; Walk : W”:[Tan(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

/20

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: U:[bl o]; Walk : W”:[Tan(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: U:[bl o]; Walk : W”:[Tan(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using o« Vt quantum operations.

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: U:[bl o]; Walk : W”:[Tan(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using o« Vt quantum operations. |.e., implement

="

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: U:[bl o]; Walk : W”:[Tan(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using o« Vt quantum operations. |.e., implement

v=|"

Proof: x! can be s-apx. on [-1, 1] with a degree-+/21 In(2/=) polynomial.

/20

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.

9/20

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.
If H is Hermitian, then P(H) coincides with the singular value transform.

9/20

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]
Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.

If H is Hermitian, then P(H) coincides with the singular value transform.
Removing parity constraint for Hermitian matrices

Let P: [-1,1] — [—%, %] be a degree-d polynomial map. Suppose that U is an a-qubit
block-encoding of a Hermitian matrix H.

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.
If H is Hermitian, then P(H) coincides with the singular value transform.

Removing parity constraint for Hermitian matrices

Let P: [-1,1] — [—%, %] be a degree-d polynomial map. Suppose that U is an a-qubit
block-encoding of a Hermitian matrix H. We can implement

u :[P(H) .]
using d times U and U", 1 controlled U, and O (ad) extra two-qubit gates.

Proof: let Peven(X) := P(x) + P(—x) and Poga(X) := P(x) — P(—x) then

1

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

10/20

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?
X —V1-x2

A= _vice

e'%7:R(x)e*7z R(x)e%7z = (x)?

10/20

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

X -V1-x2
R(x) :=
-V1-x2 —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all & € Rt! we have

() = id[Pc(x) Qc(x)i V1 - x2
O Qux)ivi =2 P:(x) ’

where P¢, Qc € C[x] are such that

;€7 R(x)e17z R(x)e47z =

(%)?

10/20

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

X -V1-x2
R(x) :=
-V1-x2 —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all & € Rt! we have

() = id[Pc(x) Qc(x)i V1 - x2
O Qux)ivi =2 P:(x) ’

where P¢, Qc € C[x] are such that
(i) deg(Pc) < danddeg(Qc) <d-1,and

;€7 R(x)e17z R(x)e47z =

(%)?

10/20

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

X -V1-x2
R(x) :=
-V1-x2 —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]
Let d € N; for all ¥ € R4t we have

(+) = id[Pc(x) Qc(x)i V1 - x2
| Qux)ivi = X2 P:(x) ’

where Pc, Qc € C[x] are such that
(i) deg(Pc) < danddeg(Qc) <d-1,and
(ii) Pc has parity-(d mod 2) and Q¢ has parity-(d — 1 mod 2), and

;€7 R(x)e17z R(x)e47z =

(%)?

10/20

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

X -V1-x2
R(x) :=
-V1-x2 —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all ® € R+ we have

d Pc(x) Qc(x)i V1 — x?
() =1 : :
QL (x)i V1 = x2 P:(x)
where Pc, Qc € C[x] are such that
(i) deg(Pc) < danddeg(Qc) <d-1,and
(i) Pc has parity-(d mod 2) and Q¢ has parity-(d =1 mod 2), and
(i) Vx € [-1,1]: [Pc(x)P 4 (1 — x®)|Qc(x)? = 1.

;€7 R(x)e17z R(x)e47z =

()7

10/20

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]
Let d € N, and P € R[x] be of degree d. There exists ® € R? such that

ﬁ R(x)e:) =[PCFX) :]

j=1

where R[Pc] = P if and only if

11/20

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]
Let d € N, and P € R[x] be of degree d. There exists ® € R? such that

ﬁ R(x)e:) =[PC'(X) :]

j=1
where R[Pc] = P if and only if
(i) P has parity-(d mod 2), and

11/20

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]
Let d € N, and P € R[x] be of degree d. There exists ® € R? such that

ﬁ R(X)e"”/‘fz =[Pc.(x)]

j=1
where R[Pc] = P if and only if

(i) P has parity-(d mod 2), and
(i) forall x € [-1,1]: |[P(x)| < 1.

11/20

Implementing the real part of a polynomial map

Direct implementation

—| ei¢d0'z l—

R(x)

—| gitd-10z l— Bp—

R(x

~—

—|ei¢oaz|_:[PCFX)]

12/20

Implementing the real part of a polynomial map

Direct implementation

— ei%e7: |1 R(x)

—| eitd-10z l— pp—

Indirect implementation

R(x

~—

—|ei¢oaz|_:[PCFX)]

ei¢d0'z D
EL R(x)

P gitoo PC(X) .
—---— R(x) I I N Pé'(x):

12/20

Implementing the real part of a polynomial map

Direct implementation

—| ei¢d0'z l— R(X

~—

Indirect implementation

ei¢d0'z D

—| eitd-10z l— cee

— R(x

~—

Real implementation

[P

N

D ei¢00'z

V)

gltor |—€

—|ei¢oaz|_:[PCFX)]

P(c(X) 2

Pi(x).

12/20

Generalisation to higher dimensions
1 x 1 case

ip
Input:[X] Modulation:[€ ot] Output:[P(.X)]

13/20

Generalisation to higher dimensions
1 x 1 case
it
Input:[X] Modulation:[© o-it] OUtput:[P(x) .]

2 x 2 case (higher-dimensional case is similar)
Input unitary Modulation Output circuit

< e P(x)

- S P(Y)

13/20

Generalisation to higher dimensions

1 X 1 case

ip
Input:[X] Modulation:[€ ot] Output:[P(.X)]

2 x 2 case (higher-dimensional case is similar)
Input unitary Modulation

Output circuit

X

o®

[P(¥)

13/20

Generalisation to higher dimensions

1 X 1 case

ip
Input:[X] Modulation:[© it] Output:[P(.X)]

2 x 2 case (higher-dimensional case is similar)

Input unitary Modulation

Output circuit

X

o®

[P(x)
P(y)
P(x)
P(y)
P(A)

13/20

Fast QMA gap amplification [Marriott-Watrous’05] [Nagaj et al. 09]

The language class QMA

The language L belongs to the class QMA if for every input length |x| there exists a quantum
verifier Viy, and numbers 0 < by < aj < 1 satisfying m = O (poly (Ix])), such that for all
x € L there exists a witness |y) such that upon measuring the state V|y|x)|0)™|y) the probability

of finding the (|x| + 1)st qubit in state [1) has probability at least aj,

x ¢ L for any state |¢) upon measuring the state V|, |x)|0)"|¢) the probability of finding the
(IxI + 1)st qubit in state |1) has probability at most byy;.

14/20

Fast QMA gap amplification [Marriott-Watrous’05] [Nagaj et al. 09]

The language class QMA

The language L belongs to the class QMA if for every input length |x| there exists a quantum
verifier Viy, and numbers 0 < by < aj < 1 satisfying m = O (poly (Ix])), such that for all

x € L there exists a witness |y) such that upon measuring the state V|y|x)|0)™|y) the probability
of finding the (|x| + 1)st qubit in state [1) has probability at least aj,

x ¢ L for any state |¢) upon measuring the state V|, |x)|0)"|¢) the probability of finding the
(IxI + 1)st qubit in state |1) has probability at most byy;.
Fast QMA amplification [Nagaj et al. 09]
We can modify the verifier circuit V|y such that the acceptance probability thresholds become

a’ :=1—-¢and b’ := g using singular value transformation of degree O(

e)

14/20

Fast QMA gap amplification [Marriott-Watrous’05] [Nagaj et al.’09]

The language class QMA

The language L belongs to the class QMA if for every input length |x| there exists a quantum
verifier Viy, and numbers 0 < by < aj < 1 satisfying m = O (poly (Ix])), such that for all

x € L there exists a witness |y) such that upon measuring the state V|y|x)|0)™|y) the probability
of finding the (|x| + 1)st qubit in state [1) has probability at least aj,

x ¢ L for any state |¢) upon measuring the state V|4j|x)|0)™|¢) the probability of finding the
(IxI + 1)st qubit in state |1) has probability at most byy;.
Fast QMA amplification [Nagaj et al. 09]
We can modify the verifier circuit V|y such that the acceptance probability thresholds become

a’ :=1-¢eand b’ := g using singular value transformation of degree O(

— 1 Joe (L)
Vau— Vb g (‘9)
Observe that by the above definition

Vxel: ||(<x| ® 1X11® lnm-1) V (Ix) ® [0X0I*™ ® I)

> \ayx|,
< \/b|x|.

Vx ¢ L: ||(1 @ 1X11® hnim-1) V (1x) ® [0X01™ ® 1)

Singular vector transformation and projection

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that
UI0) = VPIO)|¥goo) + VT = PID)Ibac), Prepare |¥goos)-

15/20

Singular vector transformation and projection

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

UI0) = VPIO)|¥goo) + VT = PID)Ibac), Prepare |¥goos)-

Note that (|0X0| ® /)U(|0X0]) = +/pl0, ¥/go0d XOl; we can apply QSVT.

15/20

Singular vector transformation and projection

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that
UI0) = VPIO)|¥goo) + VT = PID)Ibac), Prepare |¥goos)-
Note that (|0X0| ® /)U(|0X0]) = +/pl0, ¥/go0d XOl; we can apply QSVT.

Generalization: Singular vector transformation

Given a unitary U, and projectors M, 1M, such that
k
A=TUN =" silgiXyil
=1

is a singular value decomposition.

15/20

Singular vector transformation and projection

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that
UI0) = VPIO)|¥goo) + VT = PID)Ibac), Prepare |¥goos)-
Note that (|0X0| ® /)U(|0X0]) = +/pl0, ¥/go0d XOl; we can apply QSVT.

Generalization: Singular vector transformation

Given a unitary U, and projectors M, 1M, such that
K
A=TUN =" silgiXyil
i=1
is a singular value decomposition. Transform one copy of a quantum state

k k
W)= > ailyd 1o gy =) ailg).

15/20

Singular vector transformation and projection

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that
UI0) = VPIO)|¥goo) + VT = PID)Ibac), Prepare |¥goos)-
Note that (|0X0| ® /)U(|0X0]) = +/pl0, ¥/go0d XOl; we can apply QSVT.

Generalization: Singular vector transformation

Given a unitary U, and projectors M, 1M, such that
K

A=TUN=) cigiXui
is a singular value decomposition. Transform onfle:éopy of a quantum state

k k

W)= > ailyd 1o gy =) ailg).

i=i i=i

If ¢; > ¢ for all 0 # aj, we can e-apx. using QSVT with compl. 0(15 Iog(%)).

15/20

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

16/20

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t,e > 0, implement a unitary U’, which is € close to e'™ . Can be achieved with query
complexity

O (t+ log(1/¢€)).

Gate complexity is O (a) times the above.

16/20

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t,& > 0, implement a unitary U’, which is & close to . Can be achieved with query
complexity

O (t+ log(1/¢€)).
Gate complexity is O (a) times the above.

Proof sketch

Approximate to e-precision sin(tx) and cos(tx) with polynomials of degree as above. Then use
QSVT and combine even/odd parts.

Optimal complexity

log(1/¢)
@(t iog(e + log(ws)/t))

16/20

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t,e > 0, implement a unitary U’, which is ¢ close to e™. Can be achieved with query
complexity

O (t+ log(1/¢€)).
Gate complexity is O (a) times the above.

Proof sketch

Approximate to e-precision sin(tx) and cos(tx) with polynomials of degree as above. Then use
QSVT and combine even/odd parts.

Optimal complexity

log(1/¢)
© (t log(e + log(1/2)/1)

) cf. density matrix exp. ©(t?/<) Lloyd et al., Kimmel et al.]

16/20

Quantum speed-ups for distribution testing

The basic approach

17/20

Quantum speed-ups for distribution testing

The basic approach

> Sample i ~ p;

17/20

Quantum speed-ups for distribution testing

The basic approach

> Sample i ~ p;
» Estimate p;

17/20

Quantum speed-ups for distribution testing

The basic approach

> Sample i ~ p;
» Estimate p;
» Output f(p;)

17/20

Quantum speed-ups for distribution testing

The basic approach

> Sample i ~ p;
> Estimate p;
» Output f(p;) E.g., for entropy output — log(p;)

17/20

Quantum speed-ups for distribution testing

The basic approach
> Sample i ~ p;
> Estimate p;
» Output f(p;) E.g., for entropy output — log(p;)
» Estimate E[f(p;)] by repeating the process

17/20

Quantum speed-ups for distribution testing

The basic approach

» Sample i ~ p;

> Estimate p;

» Output f(p;) E.g., for entropy output — log(p;)

» Estimate E[f(p;)] by repeating the process
Quantum improvement:

17/20

Quantum speed-ups for distribution testing

The basic approach

> Sample i ~ p;

> Estimate p;

» Output f(p;) E.g., for entropy output — log(p;)
» Estimate E[f(p;)] by repeating the process

Quantum improvement: use amplitude estimation
(Bravyi, Harrow and Hassidim — 2009)

Suppose we can implement "quantum sampling“: U, : [0) = >; v/pilgili)

17/20

Quantum speed-ups for distribution testing

The basic approach

> Sample i ~ p;

> Estimate p;

» Output f(p;) E.g., for entropy output — log(p;)
» Estimate E[f(p;)] by repeating the process

Quantum improvement: use amplitude estimation
(Bravyi, Harrow and Hassidim — 2009)

Suppose we can implement "quantum sampling“: U, : [0) = >; v/pilgili)
Observation: a block encoding of 3; +/pjl¢;Xi| suffices and can be constructed!

17/20

Quantum speed-ups for distribution testing

The basic approach

> Sample i ~ p;

> Estimate p;

» Output f(p;) E.g., for entropy output — log(p;)
» Estimate E[f(p;)] by repeating the process

Quantum improvement: use amplitude estimation
(Bravyi, Harrow and Hassidim — 2009)

Suppose we can implement "quantum sampling“: U, : [0) = >; v/pilgili)
Observation: a block encoding of 3; +/pjl¢;Xi| suffices and can be constructed!

The same technique works for density operators!

17/20

Quantum speed-ups for distribution testing

The basic approach

> Sample i ~ p;

> Estimate p;

» Output f(p;) E.g., for entropy output — log(p;)
» Estimate E[f(p;)] by repeating the process

Quantum improvement: use amplitude estimation
(Bravyi, Harrow and Hassidim — 2009)

Suppose we can implement "quantum sampling“: U, : [0) = >; v/pilgili)
Observation: a block encoding of 3; +/pjl¢;Xi| suffices and can be constructed!

The same technique works for density operators!
Purified access U, : [0) = X; Vpil¢nlyi), where p = 3%, piliXil

17/20

Trick - skip estimating p;

Operationally access and transform the probabilities:

Up

18/20

Trick - skip estimating p;

Operationally access and transform the probabilities:

Uy = Ui | 02V

18/20

Trick - skip estimating p;

Operationally access and transform the probabilities:
aQsvr ., diag(+/f(p)) -

Up = U, = [diag(' VP)

18/20

Trick - skip estimating p;

Operationally access and transform the probabilities:
aQsvr ., diag(+/f(p)) -
— Uf(p) = [(. ()) .]

Up = U, = [diag(' VP)

Apply the operation to a sample:

Ui/0) 2., Vil =100 VBRI + 1)

18/20

Trick - skip estimating p;

Operationally access and transform the probabilities:
asvr [diag(VH(p)) -
= Ujp) _[. .

Up = Uy = [diag(' VP)

Apply the operation to a sample:

Uyiyl0) D Vil = 105 > Vi \F(lio}di) + 11) ...
i=1 i=1
Estimate the probability of measuring |0):

. pif(p) = Elf(p)]
i=

18/20

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let
f: [-1,1] - C, then implementing a block-encoding of f(H) requires at least || &||, uses of U, if
I € [-3. 3] is an interval of potential eigenvalues of H.

18/20

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let

f: [-1,1] - C, then implementing a block-encoding of f(H) requires at least || &||, uses of U, if

I € [-3. 3] is an interval of potential eigenvalues of H.

Proof sketch
The proof is based on an elementary argument about distinguishability of unitary operators.

18/20

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let

f: [-1,1] - C, then implementing a block-encoding of f(H) requires at least || &||, uses of U, if

I € [-3. 3] is an interval of potential eigenvalues of H.

Proof sketch
The proof is based on an elementary argument about distinguishability of unitary operators.

Optimality of pseudoinverse implementation

11 1
Let | := [;, 5} and let f(x) := e then o , = —k.

Thus our implementation is optimal up to the log(1/¢) factor.

18/20

Summarizing the various speed-ups

Speed-up Source of speed-up Examples of algorithms
) Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm

Singular value = square root of probability Grover search
Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks

19/20

Summarizing the various speed-ups

Speed-up Source of speed-up Examples of algorithms
) Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm

Singular value = square root of probability Grover search

Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks
Some more applications

» Quantum walks, fast QMA amplification, fast quantum OR lemma
» Quantum Machine learning: PCA, principal component regression
> “Non-commutative measurements” (for ground state preparation)
» Sample and gate efficient metrology, fractional queries

>

Summary of some applications of QSVT

sin(tx), cos(tx): I Hgmlltor.uan
‘ simulation

20/20

Summary of some applications of QSVT

Hamiltonian
simulation

exp(—px): \ Gibbs sampling

sin(tx), cos(tx):

20/20

Summary of some applications of QSVT

Hamiltonian
simulation

exp(—px): \ Gibbs sampling

. S /R\A ﬂ/\J Grover search

Ampl. ampl.

‘n:2s\w M \M Quantum walks

sin(tx), cos(tx):

20/20

Summary of some applications of QSVT

Hamiltonian
simulation

exp(—px): \ Gibbs sampling

SN2 AN ANAW AN e
=25 M M Quantum walks

“Fixed-point”
ampl. ampl.
Ground state

prep.

sin(tx), cos(tx):

n

~ Heaviside(x):

20/20

