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A bird’s eye view on quantum linear algebra

Motivating example - the quantum matrix inversion (HHL) algorithm
We want to solve large systems of linear equations

Ax = b.
A quantum computer can nicely work with exponential sized matrices!
Given |b), we can prepare a solution «< A~"|b).

Matrix arithmetic on a quantum computer using block-encoding

Input matrix: A; Implementation: U :[ A ]; Algorithm: U’ :[ fa) ]

In HHL f(x) = 1. Use Singular Value Transformation to approximate it!
More examples
> Optimal Hamiltonian simulation [Low et al.], quantum walks [Szegedy]

> Fixed point [Yoder et al.] and oblivious amplitude amplification [Berry et al.]
> HHL, regression [Chakraborty et al.], SDPs & LPs [Brandao et al.], ML [Kerendis et al.]
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Block-encoding

A way to represent large matrices on a quantum computer efficiently

u—[f‘ :] — A=(OFe)U(0Y¥sl).

Any complex matrix A with operator norm ||A|| < 1 can be block-encoded.

One can efficiently construct block-encodings of
» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,
> a density operator p given a unitary preparing its purification.
» a POVM operator M given we can sample from the rand.var.: Tr(pM),
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Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z ull)lk) + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:
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Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Linear combination of (non-)unitary matrices [Childs and Wiebe ’12, Berry et al. ’15]

Suppose that U = Y;1iXil® U;, and P : |0) — >.; +/pili) for p; € [0, 1].
Then (PT ® I)U(P ® I) is a block-encoding of 3; p;Ui.
In particular if (0] ® I)U;(|0) ® I) = Aj, then it is a block-encoding of

Z PiA;.
i
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Our main theorem about QSVT

Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[ A . ]:[ 2isilwiXvil . ] s Uy = [ i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

Alternating phase modulation sequence Uy :=

Simmilar result holds for even polynomials.
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Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

¥

05 1

x|= +

Degree / complexity: O(K log (%))
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Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: U:[ bl o ]; Walk : W”:[ Tan(M) . ]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using o« Vt quantum operations. |.e., implement

v=|"

Proof: x! can be s-apx. on [-1, 1] with a degree-+/21 In(2/=) polynomial.
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The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.
If H is Hermitian, then P(H) coincides with the singular value transform.

Removing parity constraint for Hermitian matrices

Let P: [-1,1] — [—%, %] be a degree-d polynomial map. Suppose that U is an a-qubit
block-encoding of a Hermitian matrix H. We can implement

u :[ P(H) . ]
using d times U and U", 1 controlled U, and O (ad) extra two-qubit gates.

Proof: let Peven(X) := P(x) + P(—x) and Poga(X) := P(x) — P(—x) then

1



Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

10/20



Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?
X —V1-x2

A= _vice

e'%7:R(x)e*7z . ... R(x)e%7z = (x)?

10/20



Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

X -V1-x2
R(x) :=
-V1-x2 —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all & € Rt! we have

() = id[ Pc(x) Qc(x)i V1 - x2
O Qux)ivi =2 P:(x) ’

where P¢, Qc € C[x] are such that

;€7 R(x)e17z . ... R(x)e47z =

(%)?

10/20



Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

X -V1-x2
R(x) :=
-V1-x2 —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all & € Rt! we have

() = id[ Pc(x) Qc(x)i V1 - x2
O Qux)ivi =2 P:(x) ’

where P¢, Qc € C[x] are such that
(i) deg(Pc) < danddeg(Qc) <d-1,and

;€7 R(x)e17z . ... R(x)e47z =

(%)?

10/20



Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

X -V1-x2
R(x) :=
-V1-x2 —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]
Let d € N; for all ¥ € R4t we have

(+) = id[ Pc(x) Qc(x)i V1 - x2
| Qux)ivi = X2 P:(x) ’

where Pc, Qc € C[x] are such that
(i) deg(Pc) < danddeg(Qc) <d-1,and
(ii) Pc has parity-(d mod 2) and Q¢ has parity-(d — 1 mod 2), and

;€7 R(x)e17z . ... R(x)e47z =

(%)?

10/20



Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

X -V1-x2
R(x) :=
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Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all ® € R+ we have
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Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]
Let d € N, and P € R[x] be of degree d. There exists ® € R? such that

ﬁ R(x)e:) =[ PCFX) : ]
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where R[Pc] = P if and only if
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Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]
Let d € N, and P € R[x] be of degree d. There exists ® € R? such that

ﬁ R(X)e"”/‘fz =[ Pc.(x) ]

j=1
where R[Pc] = P if and only if

(i) P has parity-(d mod 2), and
(i) forall x € [-1,1]: |[P(x)| < 1.
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Implementing the real part of a polynomial map

Direct implementation

—| ei¢d0'z l— R(X

~—

Indirect implementation

ei¢d0'z D
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Real implementation
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Generalisation to higher dimensions

1 X 1 case

ip
Input:[ X ] Modulation:[ © it ] Output:[ P(.X) ]

2 x 2 case (higher-dimensional case is similar)

Input unitary Modulation

Output circuit

X

o®

[ P(x)
P(y)
P(x)
P(y)
P(A)
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Fast QMA gap amplification [Marriott-Watrous’05] [Nagaj et al. 09]

The language class QMA

The language L belongs to the class QMA if for every input length |x| there exists a quantum
verifier Viy, and numbers 0 < by < aj < 1 satisfying m = O (poly (Ix])), such that for all
x € L there exists a witness |y) such that upon measuring the state V|y|x)|0)™|y) the probability

of finding the (|x| + 1)st qubit in state [1) has probability at least aj,

x ¢ L for any state |¢) upon measuring the state V|, |x)|0)"|¢) the probability of finding the
(IxI + 1)st qubit in state |1) has probability at most byy;.
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The language class QMA

The language L belongs to the class QMA if for every input length |x| there exists a quantum
verifier Viy, and numbers 0 < by < aj < 1 satisfying m = O (poly (Ix])), such that for all

x € L there exists a witness |y) such that upon measuring the state V|y|x)|0)™|y) the probability
of finding the (|x| + 1)st qubit in state [1) has probability at least aj,

x ¢ L for any state |¢) upon measuring the state V|4j|x)|0)™|¢) the probability of finding the
(IxI + 1)st qubit in state |1) has probability at most byy;.
Fast QMA amplification [Nagaj et al. 09]
We can modify the verifier circuit V|y such that the acceptance probability thresholds become

a’ :=1-¢eand b’ := g using singular value transformation of degree O(

— 1 Joe (L )
Vau— Vb g (‘9)
Observe that by the above definition

Vxel: ||(<x| ® 1X11® lnm-1) V (Ix) ® [0X0I*™ ® I)

> \ayx|,
< \/b|x|.

Vx ¢ L: ||(1 @ 1X11® hnim-1) V (1x) ® [0X01™ ® 1)
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Generalization: Singular vector transformation

Given a unitary U, and projectors M, 1M, such that
K
A=TUN =" silgiXyil
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is a singular value decomposition. Transform one copy of a quantum state
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Singular vector transformation and projection

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that
UI0) = VPIO)|¥goo) + VT = PID)Ibac),  Prepare |¥goos)-
Note that (|0X0| ® /)U(|0X0]) = +/pl0, ¥/go0d XOl; we can apply QSVT.

Generalization: Singular vector transformation

Given a unitary U, and projectors M, 1M, such that
K

A=TUN= ) cigiXui
is a singular value decomposition. Transform onfle:éopy of a quantum state

k k

W)= > ailyd 1o gy =) ailg).

i=i i=i

If ¢; > ¢ for all 0 # aj, we can e-apx. using QSVT with compl. 0(15 Iog(%)).

15/20
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Given t,& > 0, implement a unitary U’, which is & close to . Can be achieved with query
complexity

O (t+ log(1/¢€)).
Gate complexity is O (a) times the above.

Proof sketch

Approximate to e-precision sin(tx) and cos(tx) with polynomials of degree as above. Then use
QSVT and combine even/odd parts.

Optimal complexity

log(1/¢)
@(t iog(e + log(ws)/t))

16/20



Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [ i ]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t,e > 0, implement a unitary U’, which is ¢ close to e™. Can be achieved with query
complexity

O (t+ log(1/¢€)).
Gate complexity is O (a) times the above.

Proof sketch

Approximate to e-precision sin(tx) and cos(tx) with polynomials of degree as above. Then use
QSVT and combine even/odd parts.

Optimal complexity

log(1/¢)
© (t log(e + log(1/2)/1)

) cf. density matrix exp. ©(t?/<) Lloyd et al., Kimmel et al.]
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> Estimate p;

» Output f(p;) E.g., for entropy output — log(p;)
» Estimate E[f(p;)] by repeating the process

Quantum improvement: use amplitude estimation
(Bravyi, Harrow and Hassidim — 2009)

Suppose we can implement "quantum sampling“: U, : [0) = >; v/pilgili)
Observation: a block encoding of 3; +/pjl¢;Xi| suffices and can be constructed!

The same technique works for density operators!
Purified access U, : [0) = X; Vpil¢nlyi), where p = 3%, piliXil
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— Uf(p) = [ ( . ( )) . ]

Up = U, = [ diag(' VP)
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Trick - skip estimating p;

Operationally access and transform the probabilities:
asvr [ diag(VH(p)) -
= Ujp) _[ . .

Up = Uy = [ diag(' VP)

Apply the operation to a sample:

Uyiyl0) D Vil = 105 > Vi \F(lio}di) + 11) ...
i=1 i=1
Estimate the probability of measuring |0):

. pif(p) = Elf(p)]
i=

18/20



An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let
f: [-1,1] - C, then implementing a block-encoding of f(H) requires at least || &||, uses of U, if
I € [-3. 3] is an interval of potential eigenvalues of H.
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An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let

f: [-1,1] - C, then implementing a block-encoding of f(H) requires at least || &||, uses of U, if

I € [-3. 3] is an interval of potential eigenvalues of H.

Proof sketch
The proof is based on an elementary argument about distinguishability of unitary operators.

Optimality of pseudoinverse implementation

11 1
Let | := [;, 5} and let f(x) := e then o , = —k.

Thus our implementation is optimal up to the log(1/¢) factor.
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Summarizing the various speed-ups

Speed-up Source of speed-up Examples of algorithms
) Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm

Singular value = square root of probability  Grover search
Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks
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Summarizing the various speed-ups

Speed-up Source of speed-up Examples of algorithms
) Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm

Singular value = square root of probability  Grover search

Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks
Some more applications

» Quantum walks, fast QMA amplification, fast quantum OR lemma
» Quantum Machine learning: PCA, principal component regression
> “Non-commutative measurements” (for ground state preparation)
» Sample and gate efficient metrology, fractional queries

>
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Summary of some applications of QSVT

Hamiltonian
simulation

exp(—px): \ Gibbs sampling

SN2 AN ANAW AN e
=25 M M Quantum walks

“Fixed-point”
ampl. ampl.
Ground state

prep.

sin(tx), cos(tx):

n

~ Heaviside(x):

20/20



