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Day 5 — Operator Fourier Transform &
Metropolis / Gibbs Sampling



> Important in (statistical) physics, describes distribution of states at temperature T = 1/8.
> Given an “energy” function E: [d] — R, the Gibbs distribution is o« ¢ , e#E().
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CAUTION

HEAVY PHYSICS JARGON

PLEASE ASK QUESTIONS!




Classical (discrete) Metropolis-Hastings algorithm
The Objective
» We want to sample from a target distribution « 7 € Rﬁ
Think about Gibbs sampling of an n-spin Ising model z € {-1,+1}":

H(z) = - Z jizZiZj — Z,uij, 7, = exp(—BH(2)), N = 2"
i,j J

The Algorithm

> Suppose we have some symmetric “exploratory” Markov chain P € RY*N
For example: pick a random spin and flip it
» Metropolis-Hastings algorithm: from z make a transition to z” according to P

> |If r,, > 7, accept the move
> If r,, < 1, reject the move with probability 1 — TT—

Why Does it Work?
» This modified Markov chain P(*) has nice properties:
> The stationary distribution is o 7 (+we don’t need to know the normalization!)
> P() is detailed balanced with respect to 7 (a.k.a. reversible)
> In some sense P(7) is the closest such Markov chain to P (Billera and Diaconis’01)
> Often converges rapidly in physically motivated examples



Continuous-time variant of Metropolis-Hastings

Continuous-time Markov Chains

> We have a continuous-time Markov chain exp(t L) with symmetric generator L

> The off-diagonal entries of L are the (non-negative) jump rates
> The diagonal entry is minus the sum of the off-diagonal elements in the column
> |.e., L is the Laplacian of a weighted directed graph

Continuous-time Metropolis-Hastings
> We modify the jump rates similarly
> If 7; > 7; then L].ET) = Lj, i.e., accept the move
> If 7; < 7 then L].ST) = ZLj, i.e., reject the move with probability 1 - 2
Properties of the Metropolis-Hastings Generator

» This modified generator L (") has nice properties:
> The stationary distribution is o 7 (+we don’t need to know the normalization!)
> L(7) s detailed balanced with respect to 7 (a.k.a. reversible)
> In some sense L(7) is the closest such generator to L (Diaconis and Miclo’09)
> Often converges rapidly in physically motivated examples



Quantum Metropolis sampling?

The Objective
What if the objective function is a (hon-commuting) quantum Hamiltonian?
For example transverse-field Ising model:

H==-) @iZi-Z- ) uX. t=exp(-pH). N=2"
1,/ )

The Discrete-time Algorithm

Suppose we have some symmetric “exploratory” quantum process (channel) Q

For example: pick a random spin and flip it (apply X; for random j € [n])

Quantum Metropolis! (Temme, Osborne, Vollbrecht, Poulin, Verstraete Nature’11)
> If E,» < E, accept the move (where H = 3., E, [/ Xy)

exp(—BEy/)

> If E, > E, reject the move with probability 1 — =)

This is just a walk on the eigenstates!
> The stationary distribution is o« 7 (+we don’t need to know the normalization!)
> Hopefully converges rapidly in physically motivated examples

» Need to compute energy, but phase estimation has finite precision!
» Need to revert state if step is rejected (complicated Marriott-Watrous rewinding)!
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How to handle ambiguity in phase estimation?

» Temme, Osborne, Vollbrecht, Poulin, Verstraete Nature’'11:
> Use shift-invariant boosted phase estimation — provably impossible

> Yung and Aspuru-Guzik’'12
> Just assume phase estimation is perfect — unphysical

» Wocjan and Temme’21 (continuous-time quantum Metropolis <> Davies generator)
> Assume spectrum has periodic gaps (“rounding promise”) — unphysical

» Rall, Wang, Wocjan’22 (builds on WT’21 — continuous-time)
> Apply random shifts to remove ambiguity with high probability — large overheads

» Chen, Kastoryano, Brandao, G'23 (builds on WT’21 — continuous-time)
> Solution: Apply Gaussian damped phase estimation & operator Fourier transform — ©



Continuous-time quantum Metropolis
> Infinitesimal generator, a.k.a., Lindbladian superoperator L[ ]:
L] = Z KipK]" - —(K*K,p )

]70 H/—-’
transition decay

> After time t the induced quantum channel is the superoperator

exp(tL[])
> Metropolis modification of the jumps, a.k.a., Davis generator

L
me 1exp(—/3 A) Kj(A)[-] (Kj(A)) —5...(decay part),
EW E,

where

K® = WX KXy,

Y Ey—Ey=A



Reduce “jump rates” according to Metropolis weights

> The energy differences A = E; — E, are called Bohr frequencies. We can decompose K
according to the set of Bohr frequeinces B:

K= K& where K& = % /xy KXyl

N Y Ey—Ey=A

» We want to decompose K to many jump operators labeled by energy change
D)ok > > )oK,

VANS =]
then reduce jump intensity according to the energy difference
Z 1Ay e KB Z min {1, exp(—BA)}|1A) ® KA,

JANS =]

> Leading to the Metropolis modification of the jumps:

:
me 1exp(—ﬁ A) Kj(A)[-] (Kj(A)) —%...(decay part).
EW E,



Operator Fourier transform

o) <y —fori
P == exp(~iHi) exp(iHT) Piee= K(w)p(K(w))T

» Understanding operator Fourier transform:

Z Hity @ K — Z DIty exp(iHt) @ K exp(=iHt) = )" (D)) @ ) exp(iA)K™)

t AeB

H—/
peak at 0

because
exp(iHt)ly’ Xl exp(=iHt) = exp(=i(Ey — Ey )ty Xy
Finally we apply Fourier transform:

)Q
ZZ (t) exp(iAt)|t) & KA ZZ w-A)wy® KA ZIw)@ @

AeB t
@ ~K(®) for A=w

peak at A



Weak measurement scheme for Lindbladians

Block-encoding of Lindblad generators

We say that the unitary U is a block encoding of the generator £ consisting of Lindblad
operators K; if ((0°| @ NU(I0%) @ ) = £, |j) ® K;.

Using operator Fourier transform we get a block-encoding of Z}lo Yo li, w) ® Kj(w).
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Figure: Quantum circuit implementation of an approximate ¢-time step via a weak measurement
scheme. Y denotes the Pauli-Y matrix and the gate e ¥ is a rotation by angle 6.



Derivation

Assuming the system register is in the pure state |), this circuit C acts as follows:

10) - |oa>|w> Doy Ujo®)ly)
B (VT=50) + V6i1)) - (10°X0b1 @ 1) UJ0iw) + 10)- (1= 10°X0PI @ 1)UJo*)lu
=0y U0y + Vol1)- [0°)((0°] @ U0y — (1 - V1=5)I0)- (10°X0°( @ /) U[o*)l)
Ivo):=
Dioy- oty + Vit -[o?ws) — (1- VT=8)0)- U' (10°X0%l @ 1) Ujo*)iw)
=10)- 0Bl + Val1)-[0°)wp) - (1 - VT=06)0)-[07)((0%| & UT(j0°) @ 1) - ((0°| ® 1)UJ0T)Iw)
— (1= V1=6)0)- (I-102X0% ® )U' (10°X0°| ® /) U[0?)Iy)

) + Vol1) - |o">2u>K,wf>—(1 — VT-06)0)- |07 1),

jed

= [0) - |03) [I—(1—\/1— 5) Y K'K;

jed

§+0(8?) +0(62)

where |02 1) is some quantum state such that |||0? L)|| <1 and ((0%|® /) - |02 L) = 0. Tracing
out the first a + 1 qubits we get that the resulting state is 0(52)-close to the desired state.



Open questions

> In which (physical) systems can we expect rapid convergence?
» How to bound the gap of the generator or the mixing time?
> How noise resilient is this algorithm?

> Finally a quadratic improvement for carbon capture? ©



