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Quantum Gradient Computation Algorithm

Quantum Fourier Transform - extracting linear phase factors

Lete = lN be the precision we want to achieve, and set

0 1 N-1
GN = {N,N,,T}

Suppose x, k € Gy are quantum (basis) states, then
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D =" Ik).
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Quantum Gradient Computation Algorithm

Gradient computation - S. Jordan’s algorithm (2004)
Input: phase oracle Oy : |X) — |%)e?"(X), where X € G¢
Output: gradient with (hopefully) € = 1/N coordinate-wise precision
Assumption: f(X) ~ f(0) 4+ XV£(0), then
o2ri(NXV(0))
gt A |Vf(o)).
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Exponential speed-up?

> If we have a circuit computing f gradient computation introduces small overheads
Cheap gradient principle”: < 4x overhead for classical gradient computation



Day 4 — Applications of &
Quantum Gradient Computation



Application to distribution estimation
How many samples do we need to estimate every probability to ¢ precision?

» Given a distribution p € RY, we wish to estimate its entries p;.

> Taking ~ log(1/6)/? samples estimates p; to & precision with success probability at least
1 - 6 (by the Chernoff bound).

> Taking ~ log(d)/e? samples, their histogram e-approximates every p; with high probability
(by the union bound).

Can we improve this using amplitude estimation?

> Assume we can sample using the quantum computer:
d
V:[0) - > Vil
i=1

» Weakest natural assumption. E.g., implement your Monte Carlo sampler on a quant. comp.
(lwjy is arbitrary garbage, e.g., describing the state of the Monte Carlo sampler.)

» Can estimate p; to € precision with = 1/¢ steps of amplitude estimation. But all of them?
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Idea: build a probability oracle for a linear function f(X) = (X|p)!

Modifying the oracle to get probability oracle for f with Vf = p.

> Apply rotation controlled by |i)|x;) to “rejection sample”

> This gives a “probability oracle” for every X € [0, 1]9:

d
U: [6)[%) — " (VBIONDI) + Pl = X)) %)

=1l

> If the second register is in state X € [0, 1]9, then

d
Pr(first qubit is in state 0) = Z xipi = (X|p)
i=1

> This is a probability oracle for the linear function f(X) := (X|p).



Probability oracle to phase oracle
Modifying the oracle
» Given a probability oracle for the function f(X *) € [0, 1] (currently f(X) = (X|p))

Us: |0 |X (\/f(X |0>|Waccept + /1 - f(X |1>|Wreject )>) >

> We wish to implement a phase oracle
0r: [) > e™]z)
> First we create a block encoding W := (I® UZ)(SWAP ® (e U)
diag(f(X)) = ((0|{0] ® ) W([0)[0) ® /)
> We can think about diag(f(X)) as a Hamiltonian, and use Hamiltonian simulation.
> Use quantum signal processing to implement |%) — e™(¥)|%) with complexity O (N)!
Distribution estimation (Apeldoorn 2020)

> Use Jordan’s gradient computation algorithm for estimating p with 5(1 /€) queries to V.



Application to purified mixed state tomography
Input model and problem statement

> Suppose we are given purified state preparation circuit

V:[0) - [¥)as
such that Tr(lyXyl)a = p.

> We wish to estimate p to precision ¢ in trace distance

Idea: consider the linear function X — Tr(Xp)

> Suppose the matrix elements of X are uniformly random (-1, 1)

> Worst case || X|| = d (all ones matrix)

> Apart from exponentially small probability: ||X|| = Vd (matrix Chernoff bound)

» We can build block-encoding of diag(Tr(Xp)/ Vd) = diag({X|p)ns/ Vd) for most X.

» With Vd/e uses of V we get & coordinate-wise (almost) independent estimates of p
> |f the estimator is unbiased we very likely get € Vd estimate in ||-||

> Implies er Vd estimate of p in trace norm (r = rank(p)) = O (dr/e) complexity!



Bounding non-linear phase errors for non-linear functions
Want: |X) — |%)e%7©) for £ € [0,1]9. Have Oy : [£) — [%)e? ().

Rescaling the function

Suppose f(x) = 3% bjx/, then

R-f(x/R) = bR"Ix.

Note that 1 phase query to the rescaled function costs R original queries!

Trick: Using higher order numerical differential formulas

xf'(0) = —f(x) —2f(—x) + O(xs)

m

£VH(0) = ) af(ks)+ 05"

k=-m

We need ||%|| < 1! We set R ~ Vd, m ~ log(d/e)
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Optimal query complexity of smoothed

c-smooth functions (cf. Gevrey-class o = 1/2)
We say that an analytic function f is c-smooth if all k-fold partial derivatives are bounded by
ck-vVk! in absolute value for all k € N.

Query complexity for c-smooth functions
The quantum query complexity of calculating an &-||.||-apx. gradient is

é(”a).

€

Query complexity of calculating an s-approximate gradient in ||-||.,

Classical | Coord.-wise Smoothed Degree-k
ofg) | o)  o(¥) o
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A generic model of quantum optimization algorithms
Quantum circuits are powerful — use them for optimization

Tuning an inherently quantum model

> Quantum variational eigensolver — for finding a ground state
> Quantum approximate optimization algorithm
> Quantum machine learning, etc.

0) — R(x) ;
0) & v
0) &—{Re) | —10)?

Tunable circuit - Find: arg min(p(X))

X
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The quantumly tunable version of the circuit
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Quantumly tunable circuit
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Abstract model of the optimization circuits

What we have
A probability oracle

Up:|)?)|o>—>|>?)( p(X)ly0)l0) + 1—p(7)ll//1>l1>).

Filling the gap — proving smoothness of p(X)
If each tunable gate in the quantum optimization circuit can be written as

e, where ||Hj[| <1,

then p(X) is 2-smooth.

Convert it to phase oracle and use Jordan’s algorithm
The smoothed version of Jordan’s algorithm computes the gradient in time O(\/a/s).
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A separating hyperplane can be found by making 5(1) membership queries in superposition.
Classically d queries are necessary (can be seen by information theoretic lower bound)




