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Quantum Gradient Computation Algorithm

Quantum Fourier Transform - extracting linear phase factors

Let ε = 1
N be the precision we want to achieve, and set

GN :=

{
0
N
,

1
N
, . . . ,

N − 1
N

}
.

Suppose x, k ∈ GN are quantum (basis) states, then∑
x∈GN

|x⟩
e2πi(Nxk)

√
N

QFTN
−→ |k ⟩.
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Quantum Gradient Computation Algorithm

Gradient computation - S. Jordan’s algorithm (2004)

Input: phase oracle Of :
∣∣∣x⃗〉
→

∣∣∣x⃗〉
e2πif(x⃗), where x⃗ ∈ Gd

N.
Output: gradient with (hopefully) ε = 1/N coordinate-wise precision

Assumption: f(x⃗) ≈ f(0⃗) + x⃗∇f(0⃗), then

∑
x⃗∈Gd

N

∣∣∣x⃗〉
N

d
2

Of
−→
N×

∑
x⃗∈Gd

N

∣∣∣x⃗〉e2πiNf(x⃗)

N
d
2

≈ e2πiNf(0⃗)
∑

x⃗∈Gd
N

∣∣∣x⃗〉e2πi(Nx⃗∇f(0⃗))

N
d
2

QFTN
−→
⊗d
≈

∣∣∣∣∇f(0⃗)
〉
.

∑
x⃗∈Gd

N

∣∣∣x⃗〉
N

d
2

e2πi(Nx⃗∇f(0⃗)) =
d⊗

i=1

∑
xi∈GN

|xi⟩
√

N
e2πiNxi∇i f(0⃗)

Exponential speed-up?
▶ If we have a circuit computing f gradient computation introduces small overheads.
▶ “Cheap gradient principle”: ≤ 4× overhead for classical gradient computation
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Day 4 – Applications of &
Quantum Gradient Computation



Application to distribution estimation

How many samples do we need to estimate every probability to ε precision?

▶ Given a distribution p ∈ Rd
+, we wish to estimate its entries pi .

▶ Taking ≈ log(1/δ)/ε2 samples estimates p1 to ε precision with success probability at least
1 − δ (by the Chernoff bound).

▶ Taking ≈ log(d)/ε2 samples, their histogram ε-approximates every pi with high probability
(by the union bound).

Can we improve this using amplitude estimation?

▶ Assume we can sample using the quantum computer:

V :
∣∣∣0̄〉→ d∑

i=1

√
pi |i⟩|ψi⟩

▶ Weakest natural assumption. E.g., implement your Monte Carlo sampler on a quant. comp.
(|ψi⟩ is arbitrary garbage, e.g., describing the state of the Monte Carlo sampler.)

▶ Can estimate p1 to ε precision with ≈ 1/ε steps of amplitude estimation. But all of them?
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Idea: build a probability oracle for a linear function f(x⃗) = ⟨x⃗ |p⟩!

Modifying the oracle to get probability oracle for f with ∇f = p.

▶ Apply rotation controlled by |i⟩|xi⟩ to “rejection sample”

R(xi) =

( √
xi −

√
1 − xi√

1 − xi
√

xi

)
▶ This gives a “probability oracle” for every x⃗ ∈ [0, 1]d :

U :
∣∣∣0̄〉∣∣∣x⃗〉

→

d∑
i=1

(
√

pixi |0⟩|i⟩|ψi⟩+
√

pi(1 − xi)|1⟩|i⟩|ψi⟩

) ∣∣∣x⃗〉
▶ If the second register is in state x⃗ ∈ [0, 1]d , then

Pr(first qubit is in state 0) =
d∑

i=1

xipi = ⟨x⃗ |p⟩

▶ This is a probability oracle for the linear function f(x⃗) := ⟨x⃗ |p⟩.
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Probability oracle to phase oracle

Modifying the oracle

▶ Given a probability oracle for the function f(x⃗) ∈ [0, 1] (currently f(x⃗) = ⟨x⃗ |p⟩)

Uf :
∣∣∣0̄〉∣∣∣x⃗〉

→

(√
f(x⃗)|0⟩

∣∣∣ψaccept(x⃗)
〉
+

√
1 − f(x⃗)|1⟩

∣∣∣ψreject(x⃗)
〉) ∣∣∣x⃗〉

▶ We wish to implement a phase oracle

Of :
∣∣∣x⃗〉
→ e if(x⃗)

∣∣∣x⃗〉
▶ First we create a block encoding W := (I ⊗ U†f )(SWAP ⊗ I)(I ⊗ Uf )

diag(f(x⃗)) = (⟨0|
〈
0̄
∣∣∣ ⊗ I)W(|0⟩

∣∣∣0̄〉 ⊗ I)

▶ We can think about diag(f(x⃗)) as a Hamiltonian, and use Hamiltonian simulation.
▶ Use quantum signal processing to implement

∣∣∣x⃗〉
→ e iN·f(x⃗)

∣∣∣x⃗〉
with complexity Õ (N)!

Distribution estimation (Apeldoorn 2020)

▶ Use Jordan’s gradient computation algorithm for estimating p with Õ (1/ε) queries to V .
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Application to purified mixed state tomography

Input model and problem statement

▶ Suppose we are given purified state preparation circuit

V :
∣∣∣0̄〉→ |ψ⟩AB

such that Tr(|ψ⟩⟨ψ|)A = ρ.
▶ We wish to estimate ρ to precision ε in trace distance

Idea: consider the linear function X → Tr(Xρ)

▶ Suppose the matrix elements of X are uniformly random (−1, 1)
▶ Worst case ∥X∥ = d (all ones matrix)
▶ Apart from exponentially small probability: ∥X∥ =

√
d (matrix Chernoff bound)

▶ We can build block-encoding of diag(Tr(Xρ)/
√

d) = diag(⟨X |ρ⟩HS/
√

d) for most X .
▶ With

√
d/ε uses of V we get ε coordinate-wise (almost) independent estimates of ρ

▶ If the estimator is unbiased we very likely get ε
√

d estimate in ∥·∥
▶ Implies εr

√
d estimate of ρ in trace norm (r = rank(ρ)) ⇒ Õ (dr/ε) complexity!
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Bounding non-linear phase errors for non-linear functions
Want:

∣∣∣x⃗〉
→

∣∣∣x⃗〉
e

2πi
ε x⃗∇f(0) for x⃗ ∈ [0, 1]d . Have Of :

∣∣∣x⃗〉
→

∣∣∣x⃗〉
e2πif(x⃗).

Rescaling the function
Suppose f(x) =

∑∞
j=0 bjx j , then

R · f(x/R) =
∞∑

j=0

bjR1−jx j .

Note that 1 phase query to the rescaled function costs R original queries!

Trick: Using higher order numerical differential formulas

xf ′(0) =
f(x) − f(−x)

2
+ O

(
x3

)
x⃗∇f(0) =

m∑
k=−m

ak f(k x⃗) + O
(∥∥∥x⃗

∥∥∥(2m+1)
)

We need
∥∥∥x⃗

∥∥∥ < 1! We set R ≈
√

d, m ≈ log(d/ε)
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Optimal query complexity of smoothed
c-smooth functions (cf. Gevrey-class σ = 1/2)
We say that an analytic function f is c-smooth if all k -fold partial derivatives are bounded by
ck ·
√

k ! in absolute value for all k ∈ N.

Query complexity for c-smooth functions
The quantum query complexity of calculating an ε-∥.∥∞-apx. gradient is

Θ̃

c
√

d
ε

 .
Query complexity of calculating an ε-approximate gradient in ∥·∥∞

Classical Coord.-wise Smoothed Degree-k

Õ
(

d
ε2

)
Õ

(
d
ε

)
Õ

( √
d
ε

)
Õ

(
k
ε

)
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Faster quantum gradient descent!
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A generic model of quantum optimization algorithms
Quantum circuits are powerful→ use them for optimization

Tuning an inherently quantum model

▶ Quantum variational eigensolver – for finding a ground state
▶ Quantum approximate optimization algorithm
▶ Quantum machine learning, etc.

|0⟩ R(x1)

V|0⟩

|0⟩ R(x2) |0⟩?

Tunable circuit - Find: argmin
x⃗

(p(x⃗))
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Quantum trick: tuning parameters in superposition!
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The quantumly tunable version of the circuit∣∣∣∣x(1)
1

〉
∣∣∣∣x(2)

1

〉
∣∣∣∣x(1)

2

〉
∣∣∣∣x(2)

2

〉
|0⟩ R(x1)

V|0⟩

|0⟩ R(x2) |0⟩?

Quantumly tunable circuit
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Abstract model of the optimization circuits

What we have
A probability oracle

Up :
∣∣∣x⃗〉
|0⟩ →

∣∣∣x⃗〉 (√
p(x⃗)|ψ0⟩|0⟩+

√
1 − p(x⃗)|ψ1⟩|1⟩

)
.

Filling the gap – proving smoothness of p(x⃗)
If each tunable gate in the quantum optimization circuit can be written as

e ixjHj , where
∥∥∥Hj

∥∥∥ ≤ 1,

then p(x⃗) is 2-smooth.

Convert it to phase oracle and use Jordan’s algorithm

The smoothed version of Jordan’s algorithm computes the gradient in time O
(√

d/ε
)
.
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Application to a classical problem: black-box convex optimization

A separating hyperplane can be found by making Õ (1) membership queries in superposition.
Classically d queries are necessary (can be seen by information theoretic lower bound)
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