# Quantum Fourier transform beyond Shor's algorithm 

András Gilyén

Alfréd Rényi Institute of Mathematics
Budapest, Hungary


## Quantum Gradient Computation Algorithm

## Quantum Fourier Transform - extracting linear phase factors

Let $\varepsilon=\frac{1}{N}$ be the precision we want to achieve, and set

$$
G_{N}:=\left\{\frac{0}{N}, \frac{1}{N}, \ldots, \frac{N-1}{N}\right\} .
$$

Suppose $x, k \in G_{N}$ are quantum (basis) states, then

$$
\sum_{x \in G_{N}}|x\rangle \frac{e^{2 \pi i(N x k)}}{\sqrt{N}} \xrightarrow{\text { QFT }_{N}}|k\rangle .
$$

## Quantum Gradient Computation Algorithm

## Gradient computation - S. Jordan's algorithm (2004)

Input: phase oracle $O_{f}:|\vec{x}\rangle \rightarrow|\vec{x}\rangle e^{2 \pi i f(\vec{x})}$, where $\vec{x} \in G_{N}^{d}$
Output: gradient with (hopefully) $\varepsilon=1 / \mathrm{N}$ coordinate-wise precision

$$
\begin{gathered}
\text { Assumption: } f(\vec{x}) \approx f(\overrightarrow{0})+\vec{x} \nabla f(\overrightarrow{0}) \text {, then } \\
\sum_{\vec{x} \in G_{N}^{d}} \frac{|\vec{x}\rangle}{N^{\frac{d}{2}}} \underset{N x}{O_{t}} \sum_{\vec{x} \in G_{N}^{d}}|\vec{x}\rangle \frac{e^{2 \pi i N f(\vec{x})}}{N^{\frac{d}{2}}} \approx e^{2 \pi i N f(\overrightarrow{0})} \sum_{\vec{x} \in G_{N}^{d}}|\vec{x}\rangle \xrightarrow[N^{\frac{d}{2}}]{e^{2 \pi i(N \vec{x} \nabla f(\overrightarrow{0}))} \underset{\otimes d}{\operatorname{QFT}_{N}} \approx|\nabla f(\overrightarrow{0})\rangle .} .
\end{gathered}
$$

$$
\sum_{\vec{x} \in G_{N}^{d}} \frac{|\vec{x}\rangle}{N^{\frac{d}{2}}} e^{2 \pi i(N \vec{x} \nabla f(\overrightarrow{0}))}=\bigotimes_{i=1}^{d} \sum_{x_{i} \in G_{N}} \frac{\left|x_{i}\right\rangle}{\sqrt{N}} e^{2 \pi i N x_{i} \nabla_{i} f(\overrightarrow{0})}
$$

## Exponential speed-up?

- If we have a circuit computing $f$ gradient computation introduces small overheads.
- "Cheap gradient principle": $\leq 4 \times$ overhead for classical gradient computation


## Day 4 - Applications of \&

Quantum Gradient Computation

## Application to distribution estimation

## How many samples do we need to estimate every probability to $\varepsilon$ precision?

- Given a distribution $p \in \mathbb{R}_{+}^{d}$, we wish to estimate its entries $p_{i}$.
- Taking $\approx \log (1 / \delta) / \varepsilon^{2}$ samples estimates $p_{1}$ to $\varepsilon$ precision with success probability at least $1-\delta$ (by the Chernoff bound).
- Taking $\approx \log (d) / \varepsilon^{2}$ samples, their histogram $\varepsilon$-approximates every $p_{i}$ with high probability (by the union bound).


## Can we improve this using amplitude estimation?

- Assume we can sample using the quantum computer:

$$
V:|\overline{0}\rangle \rightarrow \sum_{i=1}^{d} \sqrt{p_{i}}|i\rangle\left|\psi_{i}\right\rangle
$$

- Weakest natural assumption. E.g., implement your Monte Carlo sampler on a quant. comp. ( $\left|\psi_{i}\right\rangle$ is arbitrary garbage, e.g., describing the state of the Monte Carlo sampler.)
- Can estimate $p_{1}$ to $\varepsilon$ precision with $\approx 1 / \varepsilon$ steps of amplitude estimation. But all of them?


## Idea: build a probability oracle for a linear function $f(\vec{x})=\langle\vec{x} \mid p\rangle$ !

## Modifying the oracle to get probability oracle for $f$ with $\nabla f=p$.

- Apply rotation controlled by $|i\rangle\left|x_{i}\right\rangle$ to "rejection sample"

$$
R\left(x_{i}\right)=\left(\begin{array}{lr}
\sqrt{x_{i}} & -\sqrt{1-x_{i}} \\
\sqrt{1-x_{i}} & \sqrt{x_{i}}
\end{array}\right)
$$

- This gives a "probability oracle" for every $\vec{x} \in[0,1]^{d}$ :

$$
U:|\overline{0}\rangle|\vec{x}\rangle \rightarrow \sum_{i=1}^{d}\left(\sqrt{p_{i} x_{i}}|0\rangle|i\rangle\left|\psi_{i}\right\rangle+\sqrt{p_{i}\left(1-x_{i}\right)}|1\rangle|i\rangle\left|\psi_{i}\right\rangle\right)|\vec{x}\rangle
$$

$>$ If the second register is in state $\vec{x} \in[0,1]^{d}$, then

$$
\operatorname{Pr}(\text { first qubit is in state } 0)=\sum_{i=1}^{d} x_{i} p_{i}=\langle\vec{x} \mid p\rangle
$$

- This is a probability oracle for the linear function $f(\vec{x}):=\langle\vec{x} \mid p\rangle$.


## Probability oracle to phase oracle

## Modifying the oracle

- Given a probability oracle for the function $f(\vec{x}) \in[0,1]$ (currently $f(\vec{x})=\langle\vec{x} \mid p\rangle)$

$$
U_{f}:|\overline{0}\rangle|\vec{x}\rangle \rightarrow\left(\sqrt{f(\vec{x})}|0\rangle\left|\psi_{\text {accept }}(\vec{x})\right\rangle+\sqrt{1-f(\vec{x})}|1\rangle\left|\psi_{\text {reject }}(\vec{x})\right\rangle\right)|\vec{x}\rangle
$$

- We wish to implement a phase oracle

$$
O_{f}:|\vec{x}\rangle \rightarrow e^{i f(\vec{x})}|\vec{x}\rangle
$$

- First we create a block encoding $W:=\left(I \otimes U_{f}^{\dagger}\right)(S W A P \otimes I)\left(I \otimes U_{f}\right)$

$$
\operatorname{diag}(f(\vec{x}))=(\langle 0|\langle\overline{0}| \otimes I) W(|0\rangle|\overline{0}\rangle \otimes I)
$$

- We can think about diag $(f(\vec{x}))$ as a Hamiltonian, and use Hamiltonian simulation.
- Use quantum signal processing to implement $|\vec{x}\rangle \rightarrow e^{i N \cdot f(\vec{x})}|\vec{x}\rangle$ with complexity $\widetilde{O}(N)$ !


## Distribution estimation (Apeldoorn 2020)

- Use Jordan's gradient computation algorithm for estimating $p$ with $\widetilde{O}(1 / \varepsilon)$ queries to V .


## Application to purified mixed state tomography

## Input model and problem statement

- Suppose we are given purified state preparation circuit

$$
V:|\overline{0}\rangle \rightarrow|\psi\rangle_{A B}
$$

such that $\operatorname{Tr}(|\psi X \psi|)_{A}=\rho$.

- We wish to estimate $\rho$ to precision $\varepsilon$ in trace distance


## Idea: consider the linear function $X \rightarrow \operatorname{Tr}(X \rho)$

- Suppose the matrix elements of $X$ are uniformly random $(-1,1)$
- Worst case $\|X\|=d$ (all ones matrix)
- Apart from exponentially small probability: $\|X\|=\sqrt{d}$ (matrix Chernoff bound)
- We can build block-encoding of $\operatorname{diag}(\operatorname{Tr}(X \rho) / \sqrt{d})=\operatorname{diag}\left(\langle X \mid \rho\rangle_{H S} / \sqrt{d}\right)$ for most $X$.
- With $\sqrt{d} / \varepsilon$ uses of $V$ we get $\varepsilon$ coordinate-wise (almost) independent estimates of $\rho$
- If the estimator is unbiased we very likely get $\varepsilon \sqrt{d}$ estimate in $\|\cdot\|$
- Implies $\varepsilon r \sqrt{d}$ estimate of $\rho$ in trace norm $(r=\operatorname{rank}(\rho)) \Rightarrow \widetilde{O}(d r / \varepsilon)$ complexity!


## Bounding non-linear phase errors for non-linear functions

Want: $|\vec{x}\rangle \rightarrow|\vec{x}\rangle e^{2 \frac{2 \pi}{e} \bar{x} v f(0)}$ for $\vec{x} \in[0,1]^{d}$. Have $O_{f}:|\vec{x}\rangle \rightarrow|\vec{x}\rangle e^{2 \pi i f(\vec{x})}$.

## Rescaling the function

Suppose $f(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$, then

$$
R \cdot f(x / R)=\sum_{j=0}^{\infty} b_{j} R^{1-j} x^{j}
$$

Note that 1 phase query to the rescaled function costs $R$ original queries!

## Trick: Using higher order numerical differential formulas

$$
\begin{gathered}
x f^{\prime}(0)=\frac{f(x)-f(-x)}{2}+O\left(x^{3}\right) \\
\vec{x} \nabla f(0)=\sum_{k=-m}^{m} a_{k} f(k \vec{x})+O\left(\|\vec{x}\|^{(2 m+1)}\right)
\end{gathered}
$$

We need $\|\vec{x}\|<1$ ! We set $R \approx \sqrt{d}, m \approx \log (d / \varepsilon)$

## Optimal query complexity of smoothed

c-smooth functions (cf. Gevrey-class $\sigma=1 / 2$ )
We say that an analytic function $f$ is $c$-smooth if all $k$-fold partial derivatives are bounded by $c^{k} \cdot \sqrt{k!}$ in absolute value for all $k \in \mathbb{N}$.

## Query complexity for c-smooth functions

The quantum query complexity of calculating an $\varepsilon$ - ||. $\|_{\infty}$-apx. gradient is

$$
\widetilde{\Theta}\left(\frac{c \sqrt{d}}{\varepsilon}\right) .
$$

## Query complexity of calculating an $\varepsilon$-approximate gradient in $\|\cdot\|_{\infty}$

| Classical | Coord.-wise | Smoothed | Degree-k |
| :---: | :---: | :---: | :---: |
| $\widetilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$ | $\widetilde{O}\left(\frac{d}{\varepsilon}\right)$ | $\widetilde{O}\left(\frac{\sqrt{d}}{\varepsilon}\right)$ | $\widetilde{O}\left(\frac{k}{\varepsilon}\right)$ |

Faster quantum gradient descent!


## A generic model of quantum optimization algorithms

Quantum circuits are powerful $\rightarrow$ use them for optimization

## Tuning an inherently quantum model

- Quantum variational eigensolver - for finding a ground state
- Quantum approximate optimization algorithm
- Quantum machine learning, etc.


Tunable circuit - Find: $\underset{\vec{x}}{\arg \min }(p(\vec{x}))$

Quantum trick: tuning parameters in superposition!


## The quantumly tunable version of the circuit



Quantumly tunable circuit

## Abstract model of the optimization circuits

## What we have

A probability oracle

$$
U_{p}:|\vec{x}\rangle|0\rangle \rightarrow|\vec{x}\rangle\left(\sqrt{p(\vec{x})}\left|\psi_{0}\right\rangle|0\rangle+\sqrt{1-p(\vec{x})}\left|\psi_{1}\right\rangle|1\rangle\right) .
$$

## Filling the gap - proving smoothness of $p(\vec{x})$

If each tunable gate in the quantum optimization circuit can be written as

$$
e^{i x_{j} H_{j}} \text {, where }\left\|H_{j}\right\| \leq 1 \text {, }
$$

then $p(\vec{x})$ is 2-smooth.

## Convert it to phase oracle and use Jordan's algorithm

 The smoothed version of Jordan's algorithm computes the gradient in time $O(\sqrt{d} / \varepsilon)$.
## Application to a classical problem: black-box convex optimization



A separating hyperplane can be found by making $\widetilde{O}(1)$ membership queries in superposition. Classically $d$ queries are necessary (can be seen by information theoretic lower bound)

