Quantum Fourier transform beyond Shor's algorithm

András Gilyén

Alfréd Rényi Institute of Mathematics
Budapest, Hungary

Day 2 - Quantum Phase Estimation \& Connecting Discrete and Continuous Fourier Transforms

Quantum Phase Estimation

Given a (black-box) unitary U and one of its eigenvectors $|\psi\rangle$ with unknown eigenvalue $e^{2 \pi i \varphi}$ we would like to learn the phase $\varphi \in[0,1)$ by implementing a map $|\psi\rangle|0\rangle \rightarrow|\psi\rangle|\varphi\rangle$.

Phase estimation circuit when $\varphi=0 . \varphi_{1} \varphi_{2} \ldots \varphi_{n}$ has (at most) n-bits

Quantum Phase Estimation - arbitrary phases

Computing the amplitudes for general φ

$$
\begin{aligned}
\frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} e^{2 \pi i \varphi t}|t\rangle \stackrel{\text { QFT }}{N} & \frac{1}{N} \sum_{t=0}^{N-1} \sum_{k=0}^{N-1} e^{2 \pi i \varphi t} e^{-2 \pi i k t / N}|k\rangle \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \sum_{t=0}^{N-1} e^{2 \pi i\left(\varphi-0 . k_{1} k_{2} \ldots k_{n}\right) t}|k\rangle \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \frac{e^{2 \pi i\left(\varphi-0 . k_{1} k_{2} \ldots k_{n}\right) N}-1}{e^{2 \pi i\left(\varphi-0 . k_{1} k_{2} \ldots k_{n}\right)}-1}|k\rangle
\end{aligned}
$$

(by geometric summation)

The output distribution in terms of $\Delta:=\varphi-0 . k_{1} k_{2} \ldots k_{n}$

$$
\begin{array}{rlr}
\left|\frac{1}{N} \frac{e^{2 \pi i\left(\varphi-0 . k_{1} k_{2} \ldots k_{n}\right) N}-1}{e^{2 \pi i\left(\varphi-0 . k_{1} k_{2} \ldots k_{n}\right)}-1}\right|^{2} & =\left|\frac{1}{N} \frac{e^{\pi N i \Delta}-e^{-\pi N i \Delta}}{e^{\pi i \Delta}-e^{-\pi i \Delta}}\right|^{2} & \text { (multiply by } \left.\frac{e^{-\pi N i \Delta}}{e^{-\pi i \Delta}} \text { under }|\cdot|\right) \\
& =\left|\frac{1}{N} \frac{\sin (\pi N \Delta)}{\sin (\pi \Delta)}\right|^{2} & \left(e^{i x}-e^{-i x}=2 \sin (x)\right) \\
& =\left|\frac{\operatorname{sinc}(\pi N \Delta)}{\operatorname{sinc}(\pi \Delta)}\right|^{2} & (\operatorname{sinc}(x)=\sin (x) / x)
\end{array}
$$

Heavy tail

Although, we get the best two estimates with high probability, the distribution has a heavy tail:

Figure: Plot of $\frac{\operatorname{sinc}^{2}(\pi N \Delta)}{\operatorname{sinc}^{2}(\pi \Delta)}$ for $N=8$ and true phase 1/24.

Quantum Phase Estimation - error probabilities

The probability of obtaining estimate off by \triangle

We just computed it for $\Delta \in\left[-\frac{1}{2}, \frac{1}{2}\right)$:

$$
\frac{\operatorname{sinc}^{2}(\pi N \Delta)}{\operatorname{sinc}^{2}(\pi \Delta)}
$$

- The probability of obtaining the best n-bit estimate is when $|\triangle \bmod 1|$ is the smallest. The worst case is when $\Delta_{\min }=\frac{1}{2 N}$:

$$
\frac{\operatorname{sinc}^{2}\left(\pi N \Delta_{\min }\right)}{\operatorname{sinc}^{2}\left(\pi \Delta_{\min }\right)} \geq \frac{\operatorname{sinc}^{2}\left(\pi N \frac{1}{2 N}\right)}{\operatorname{sinc}^{2}\left(\pi \frac{1}{2 N}\right)} \geq \operatorname{sinc}^{2}(\pi / 2)=\left(\frac{1}{\pi / 2}\right)^{2}=\frac{4}{\pi^{2}}>40 \%
$$

\checkmark The probability of obtaining one of the two best n-bit estimates corresponds to $\Delta_{\min }$, $\frac{1}{N}-\Delta_{\min }$. The worst case is once again when $\Delta_{\min }=\frac{1}{2 N}$:

$$
\frac{\operatorname{sinc}^{2}\left(\pi N \Delta_{\min }\right)}{\operatorname{sinc}^{2}\left(\pi \Delta_{\min }\right)}+\frac{\operatorname{sinc}^{2}\left(\pi N\left(\frac{1}{N}-\Delta_{\min }\right)\right)}{\operatorname{sinc}^{2}\left(\pi\left(\frac{1}{N}-\Delta_{\min }\right)\right)} \geq 2 \frac{\operatorname{sinc}^{2}\left(\pi N \frac{1}{2 N}\right)}{\operatorname{sinc}^{2}\left(\pi \frac{1}{2 N}\right)} \geq 2\left(\frac{1}{\pi / 2}\right)^{2}=\frac{8}{\pi^{2}}>80 \%
$$

Boosting

The median trick

Suppose our estimator outputs an ε-precise estimate with probability at least 80%.

- Take s independent estimates, and compute their median.
- The expected number of estimates within ε-precision is at least 80%.
- It is exponentially unlikely in s that at least 50% of estimates are farther than ε. (See the Chernoff bound.)
- When more than 50% of estimates are ε-precise their median is also ε-precise!

Median on the cycle?

- Output the most frequently seen element (in case of a tie, choose one randomly).
- It is exponentially unlikely that the most frequently seen estimate is not one of the two best n-bit estimates (as they have jointly probability $\geq 80 \%$).
- The output distribution is exponentially concentrated on the two best estimates!

Unfortunately, we cannot ensure that that we get a unique estimate with high probability!

Unbiased (symmetric) estimator

The random shift trick

Input: $|\psi(\phi)\rangle=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{i \phi k}|k\rangle$ (for unknown ϕ), and a parameter $n \in \mathbb{N}$
1: Sample a uniformly random n-digit binary number $u \in[0,1)$ and define $\xi:=\frac{2 \pi u}{N}$
2: Apply multi-phase gate $\sum_{k=0}^{N-1} e^{-i \xi k}|k X k|$ to $|\psi(\phi)\rangle$
3: Perform inverse Fourier transform over \mathbb{Z}_{N} and measure the state, yielding outcome j
4: Return $\varphi:=\frac{2 \pi j}{N}+\xi=\frac{2 \pi}{N}(j+u)$

Median on the cycle?

Theorem (Unbiased Phase Estimation - Apeldoorn, Cornelissen, G, Nannicini (2022))

If we run the above Algorithm with $n=\infty$ in Line 1 , then it returns a random phase $\varphi \in[0,2 \pi)$ with probability density function

$$
f(\varphi):=\frac{N}{2 \pi} \frac{\operatorname{sinc}^{2}\left(\frac{N}{2}|\phi-\varphi|_{2 \pi}\right)}{\operatorname{sinc}^{2}\left(\frac{1}{2}|\phi-\varphi|_{2 \pi}\right)}
$$

Applications: (almost) optimal coherent tomography, improved estimation algorithms for partition functions, low-depth amplitude estimation, etc.

The continuous probability density function of estimates

Figure: Plot of $f(\varphi)$ for $x=\phi-\varphi$ and $M=16$.

Can you boost it while keeping the distribution symmetric?

Connecting Discrete and Continuous Fourier Transforms

Discrete vs. Continuous Fourier Transform

The Continuous Fourier Transform \mathcal{F}

$$
\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i \omega t} f(t) d t
$$

$\mathcal{F}: \mathcal{L}_{2} \rightarrow \mathcal{L}_{2}$ is a unitary transformation (on the Hilbert space of square integrable functions)

Periodic Wrapping of Continuous Functions

Let $f: \mathbb{R} \rightarrow \mathbb{C}$, and $r \in \mathbb{R}_{+}$be a "period". We define its wrapping as a function $[0, r] \rightarrow \mathbb{C}$

$$
f^{(r)}(x):=\lim _{N \exists K \rightarrow \infty} \sum_{k=-K}^{K} f(x+k r) .
$$

Similarly we define discretized wrapping for $N \in \mathbb{N}$ as a vector in \mathbb{C}^{N} defined as

$$
f_{j}^{(r, N)}:=\lim _{\mathbb{N} \exists K \rightarrow \infty} \sum_{k=-K}^{K} f\left(\frac{j}{N} r+k r\right) .
$$

Discrete vs. Continuous Fourier Transform

Connection between Discrete and Continuous Fourier transform

$$
\widehat{f(T, N)}=\frac{\sqrt{2 \pi N}}{T} \hat{f}\left(\frac{2 \pi N}{T}, N\right)
$$

Terms and conditions apply, but certainly holds for smooth rapidly decaying functions. For more details see Chen, Kastoryano, Brandão, G (2023).

A Commutative Diagram Representation (ignoring the scalar factor)

Continuous Fourier Transform: shift \leftrightarrow point-wise phase multipl.

Set $T=N=64$ and $\varphi=6 / 37$ - absolute amplitude plot on the circle

Shifted (discretized) Gaussian

$$
f(t) \propto \exp \left(-(t-32)^{2} / 256\right),
$$

and its Fourier Transform $|\widehat{f(N, N)} j| \propto \exp \left(-(2 \pi j)^{2} / 96\right)$.

Shifted, phase kicked Gaussian $f(t) \propto \exp \left(\frac{12 \pi}{37} i t-(t-32)^{2} / 256\right)$, and its Fourier Transform
$|\widehat{f(N, N)} j| \propto \exp \left(-(2 \pi j)^{2} / 96\right)$.

The key observation

In the Gaussian case due to the rapid decay of the tail we have:

$$
f_{\mid[0, T)}^{(T, N)} \approx f(T, N) \quad \widehat{f(T, N)}=\frac{\sqrt{2 \pi N}}{T} \hat{f}\left(\frac{2 \pi N}{T}, N\right) \quad \hat{f}\left(\frac{2 \pi N}{T}, N\right) \approx \hat{f}_{\mid[-\pi, \pi)}^{\left(\frac{2 \pi N}{T}, N\right)}
$$

With phase shift

Let us introduce

$$
\begin{gathered}
f_{\varphi}(t):=f(t) \cdot e^{2 \pi i \cdot \varphi t} \\
f_{\varphi[[0, T)}^{(T, N)} \approx f^{(T, N)} \widehat{f_{\varphi}^{(T, N)}}=\frac{\sqrt{2 \pi N}}{T} \hat{f}_{\varphi}^{\left(\frac{2 \pi N}{T}, N\right)} \quad \hat{f}_{\varphi}^{\left(\frac{2 \pi N}{T}, N\right)} \approx \hat{f}_{\varphi\left[\left[2 \pi\left(\varphi-\frac{1}{2}\right), 2 \pi\left(\varphi+\frac{1}{2}\right)\right)\right.}^{\left(\frac{2 \pi N}{T}, N\right)}
\end{gathered}
$$

Note that changing $\varphi \pm 1$ does not change anything due to periodic wrapping!

Compare to vanilla phase estimation

Set $N=16$ and $\varphi=6 / 37$ - absolute amplitude plot on the circle

Bonus in the Gaussian case: we can increase the resolution cheaply! Increase N, keep $T=N$ and do not change the Gaussian function just its wrapping. This does not change the "query" complexity just requires a larger QFT.

Gaussian parameters

Let $\sigma \approx \sqrt{\log (1 / \delta)} / \varepsilon$ and $f(t) \propto \exp \left(-t^{2} /\left(2 \sigma^{2}\right)\right)$. Then

$$
\hat{f}(\omega) \propto \exp \left(-\sigma^{2} \omega^{2} / 2\right)
$$

Implying that the absolute amplitude of $|j\rangle$ in $\widehat{f(N, N)}$ is roughly proportional to $\left(\omega \leftarrow \frac{2 \pi j}{N}\right)$

$$
\exp \left(-\sigma^{2}(2 \pi j / N)^{2} / 2\right)
$$

Gaussian tail bound

$$
\int_{x}^{\infty} \frac{1}{\sigma} e^{-t^{2} /\left(2 \sigma^{2}\right)} d t \leq \frac{1}{\sigma} \int_{x}^{\infty} \frac{t}{x} e^{-t^{2} /\left(2 \sigma^{2}\right)} d t=\frac{\sigma}{x} \int_{x}^{\infty} \frac{t}{\sigma^{2}} e^{-t^{2} /\left(2 \sigma^{2}\right)} d t=\frac{\sigma}{x} e^{-x^{2} /\left(2 \sigma^{2}\right)}
$$

To get δ accuracy we need about $\sqrt{\log (1 / \delta)} \sigma \approx \log (1 / \delta) / \varepsilon$ uses of U.
If $N=\Omega(\sqrt{\log (1 / \delta)} \sigma)=\Omega(\log (1 / \delta) / \varepsilon)$, then due to the above tail bound the truncated and the wrapped (discrete) Gaussians are $O(\delta)$ close to each other.

High accuracy phase estimation in a single run

Idea: use Gaussian amplitudes

- Wrapped Gaussian is almost the same as truncated Gaussian due to rapid decay.
- Fourier transform of a Gaussian is Gaussian, so we get Gaussian noise!
- Choosing parameters appropriately we get an estimator with standard deviation about $1 / N$ (up to logarithmic factors) in a single run without garbage ancilla states.
- Initial Gaussian amplitudes can be efficiently prepared - see McArdle, G, Berta (2022)
- Further optimized initial weights can give potential constant improvements: use Kaiser window function from signal processing. See Berry et al. (2022).

Application to Energy Estimation

Hamiltonian Simulation Using Block Encodings

- Suppose we are given a unitary V block encoding of a Hamiltonian H

$$
H=(\langle\overline{0}| \otimes I) V(|\overline{0}\rangle \otimes I)
$$

- Quantum signal processing efficiently implements $e^{i t H}$ by $O(t+\log (1 / \varepsilon))$ uses of V.
- For more details see next week Ewin's lectures.

Using phase estimation we get an ε-precise energy estimate using $\widetilde{O}(1 / \varepsilon)$ uses of U.

Application to Singular Value Estimation

Block Encoding of an arbitrary matrix

- Suppose we are given a unitary V block encoding a (rectangular) matrix A

$$
A=\left(\left\langle\left. 0\right|^{\otimes a} \otimes I\right) V\left(|0\rangle^{\otimes b} \otimes I\right)\right.
$$

Singular vector estimation

- Consider the singular value decomposition

$$
A=\sum_{j} \sigma_{j}\left|u_{j} \backslash v_{j}\right|,
$$

where $\sigma_{j} \geq 0$ are the singular values and $\left|u_{j}\right\rangle,\left|v_{j}\right\rangle$ are the left and right singular vectors.

- Similarly to phase estimation we wish to estimate the singular value of a given (right) singular vector $\left|v_{j}\right\rangle$
- Similar performance to phase estimation, except we get estimates of $\pm \sigma_{j}$. See Kerenidis and Prakash (2016), Chakraborty, G, Jeffery (2018), Cornelissen and Hamoudi (2022).

