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Day 1 – The Basics:
Discrete and Quantum Fourier Transform

Review of Chapter 4 of Ronald de Wolf’s Quantum Computing lecture notes
https://arxiv.org/abs/1907.09415v5

https://arxiv.org/abs/1907.09415v5


Motivation and Applications of Fourier Transform
The Fourier transform is a widely used theoretical and practical tool to isolate different periodic
parts of a function, signal, etc.

Some applications of the continuous Fourier Transform

▶ Solving differential equations
▶ Uncertainty principle in quantum mechanics
▶ · · ·

The discrete Fourier Transform can be viewed as its discretization (more about this tomorrow).

Some applications of the discrete Fourier Transform

▶ Signal processing (music)
▶ Image compression (jpeg)
▶ Fast multiplication of polynomials
▶ · · ·

And of course quantum computing!
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The Discrete Fourier Transform
The Discrete Fourier transform is a unitary map over CN, whose matrix elements have the
same absolute value in the computational basis. More precisely let ωN := e−2πi/N, then

FN :=
1
√

N


...

· · · ω
jk
N · · ·
...

 ,
where j, k ∈ {0, 1, . . . ,N − 1} are row and column indices. In particular

H = F2 =
1
√

2

(
1 1
1 −1

)
.

(Note that here we are using mathematics convention for the phases e−2πi/N, which might
differ form the convention elsewhere including several quantum computing papers.)
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Properties of the Discrete Fourier Transform

Unitarity

Calculating the sum of geometric sequences we can see that the columns are orthonormal

N−1∑
j=0

1
√

N
(ωjk

N )
∗ 1
√

N
ω

jk ′

N =
1
N

N−1∑
j=0

ω
j(k ′−k)
N =

{
1 if k = k ′

0 otherwise.

▶ F−1
N = F∗N (since FN is symmetric)

▶ v̂ := FNv (standard notation for Fourier transform)
▶ The Fast Fourier transform (FFT) algorithm can compute v̂ in O (N log(N)) steps instead

of the naïve matrix-vector multiplication algorithm which makes ≈ N2 steps.
▶ One of the most important algorithms ever, in signal processing, etc.
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Efficient Quantum Fourier Transform for N = 2n

FN |k ⟩ =
1
√

N

N−1∑
j=0

ω
jk
N |j⟩

Efficient implementation using O
(
n2

)
one- and two-qubit quantum gates

"Exponetially" faster than FFT (but access to output is limited).
Key property: FN |k ⟩ is a product state. Let j = j1 . . . jn and k = k1 . . . kn in binary, then

1
√

N

N−1∑
j=0

ω
jk
N |j⟩ =

1
√

2n

∑
j∈{0,1}n

n∏
ℓ=1

e−2πijℓk/2ℓ |j1 . . . jn⟩ =
n⊗
ℓ=1

1
√

2

(
|0⟩+ e−2πik/2ℓ |1⟩

)
=

n⊗
ℓ=1

1
√

2

(
|0⟩+ e−2πi 0.kn−ℓ+1...kn |1⟩

)
.
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Efficient Quantum Fourier Transform for N = 23

F8|k1k2k3⟩ =
1
√

2
(|0⟩+ e−2πi0.k3 |1⟩) ⊗

1
√

2
(|0⟩+ e−2πi0.k2k3 |1⟩) ⊗

1
√

2
(|0⟩+ e−2πi0.k1k2k3 |1⟩)

We will use the following rotation gates

Rs =

(
1 0
0 e−2πi/2s

)
,

noting that R1 and preparing the uniform superposition 1√
2
(|0⟩+ |1⟩) can be performed jointly

using a Hadamard gate H. Arranging these Hadamard gates and controlled versions of the
above rotations so that we only Hadamard transform a bit after all its corresponding controlled
rotations are done, we get the following circuit for QFT:

|k1⟩ H R2 R3

|k2⟩ H R2

|k3⟩ H

The general case n > 3 is analogous. 5 / 10



The Hidden Subgroup Problem for
Abelian Groups

Review of Chapter 6 of Ronald de Wolf’s Quantum Computing lecture notes
https://arxiv.org/abs/1907.09415v5

https://arxiv.org/abs/1907.09415v5


Fourier transform on (finite) groups

Representation theory basics

Representation theory uses linear algebra to study groups.
▶ Given a (finite) group G we call a homomorphism φ : G 7→ Cd×d into the multiplicative

group of d × d complex matrices a d-dimensional representation.
▶ A representation φ is irreducible iff no non-trivial subspace is invariant under all linear

maps (matrices) in the image of φ.
▶ A 1-dimensional representation χ is called a character. Note that χ(e) = χ(e2) = χ(e)2,

therefore 1 = χ(e) = χ(g|G|) = χ(g)|G| implying that χ(g) is a |G|-th root of unity ∀g ∈ G.
▶ For an Abelian group G, all irreducible representations are 1-dimensional, and there are
|G| different such representations (characters).

Character group of Abelian groups

The 1-dimensional representations of G form a group Ĝ under point-wise multiplication, called
the character group.
▶ Let φ, χ : G 7→ C be 1-dimensional representations, then the point-wise multiplication

yields (φ · χ)(g) = φ(g) · χ(g).
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Fourier transform on finite Abelian groups

Cyclic groups
▶ The k -th column of FN is essentially a character χk such that χk (j) :=

√
N(FN)jk = ωjk

N .

Then χk (j + j′) = ω(j+j′)k
N = χk (j)χk (j′) is indeed a 1-dimensional representation.

▶ Thus we can consider FN : |k ⟩ → 1√
N
|χk ⟩ a map G → Ĝ (which is a homomorphism).

Finite Abelian groups in general
▶ Any Abelian group G has |G| characters that are also orthogonal to each other.
▶ The "Basis Theorem" from group theory states that every finite Abelian groups is in fact

isomorphic to a product (or direct sum in additive notation) of cyclic groups

G ≃ ZN1 × ZN2 × · · · × ZNt .

▶ The characters of G are then simply the (tensor) products of their cyclic components

Ĝ ≃ ẐN1 × ẐN2 × · · · × ẐNt and FG ≃ FN1 ⊗ FN2 ⊗ · · · ⊗ FNt .

▶ For example FZn
2

is H⊗n.
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The (Abelian) Hidden Subgroups Problem

The Hidden Subgroup Problem (HSP)

▶ Given a function f : G 7→ X that hides the subgroup H ≤ G, i.e., f(g1) = f(g2) iff
g1H = g2H find H with a few queries to f .

▶ Equivalently, f is an injective function on cosets.

An efficient quantum algorithm for Abelian HSP

▶
∑

g∈G
1√
|G|
|g⟩

Of

QFTG

|0⟩

▶∑
g∈G

1
√
|G|
|g⟩|0⟩

Of
→

∑
g∈G

1
√
|G|
|g⟩

∣∣∣f(g)〉 meas.
→

∑
h∈H

1
√
|H|
|f−1(x)︸ ︷︷ ︸

s:=

+ h⟩|x⟩
QFTG
→

∑
h∈H

1
√
|H||G|

∣∣∣χs+h
〉
|x⟩
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"Decoding" the Abelian HSP
How to use the measurement outcome of the first register?
▶ What is the outcome of the measurement on the final state?

1√
|H||G|]

∑
h∈H

∣∣∣χs+h
〉
=

1
√
|H||G|

∑
h∈H

∑
g∈G

χs+h(g)|g⟩

=
1

√
|H||G|

∑
g∈G

χs(g)
∑
h∈H

χh(g)|g⟩ =

√
|H|
|G|

∑
g:χg∈H⊥

χs(g)|g⟩,

▶ For the last equality note that χg restricted to H is a character of H, and let H⊥ ≤ Ĝ be the
subgroup of characters that are constant-1 on H:∑

h∈H

χh(g) =
∑
h∈H

χg(h) =
{
|H| if χg ∈ H⊥

0 if χg < H⊥.

▶ Thus we obtain a uniformly random g such that χg ∈ H⊥.
▶ Each such g gives a linear constraint on H (since χg(h) = 1 for all h ∈ H). Collecting a

few such g uniquely determines H.
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The non-Abelian HSP

What works and what does not

▶ QFTG is somewhat harder to define and implement
▶ Unclear how to efficiently recover the subgroup
▶ However, the same algorithm is actually query efficient (Barnum & Knill 2002)
▶ Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell,

Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (Ivanyos, Sanselme,
Sántha 2007), and certain semidirect product p-groups of constant nilpotency class
(Ivanyos, Sántha 2015)

▶ Kuperberg’s algorithm (2003) solves HSP in the dihedral group in time

2
O

(√
log(|G|)

)

Important example: Graph isomorphism (i.e., deciding whether G ≃ G′)
▶ Group: S2n, Function: permute the vertices of G ∪ G′

▶ Subgroup: Automorphisms of G ∪ G′

▶ Output: whether there is a generator interchanging vertices of G and G′
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