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Day 1 — The Basics:
Discrete and Quantum Fourier Transform

Review of Chapter 4 of Ronald de Wolf’s Quantum Computing lecture notes
https://arxiv.org/abs/1907.09415v5
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Motivation and Applications of Fourier Transform

The Fourier transform is a widely used theoretical and practical tool to isolate different periodic
parts of a function, signal, etc.

Some applications of the continuous Fourier Transform
> Solving differential equations

» Uncertainty principle in quantum mechanics
= oo0

The discrete Fourier Transform can be viewed as its discretization (more about this tomorrow).
Some applications of the discrete Fourier Transform

> Signal processing (music)
> Image compression (jpeg)

> Fast multiplication of polynomials
» ...

And of course quantum computing!



The Discrete Fourier Transform

The Discrete Fourier transform is a unitary map over CV, whose matrix elements have the
same absolute value in the computational basis. More precisely let wy := e 2"/N  then

W .N o,
where j,k € {0,1,...,N — 1} are row and column indices. In particular
1 1 1
i=r=(1 1)

(Note that here we are using mathematics convention for the phases e=2"/N, which might
differ form the convention elsewhere including several quantum computing papers.)



Properties of the Discrete Fourier Transform

Unitarity

Calculating the sum of geometric sequences we can see that the columns are orthonormal
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> Fy' = F}, (since Fy is symmetric)
> ¥ := Fyv (standard notation for Fourier transform)

» The Fast Fourier transform (FFT) algorithm can compute ¥ in O (Nlog(N)) steps instead
of the naive matrix-vector multiplication algorithm which makes ~ N? steps.

> One of the most important algorithms ever, in signal processing, etc.



Efficient Quantum Fourier Transform for N = 2"
g e
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Efficient implementation using O (n2) one- and two-qubit quantum gates
"Exponetially" faster than FFT (but access to output is limited).
Key property: Fylk) is a product state. Let j = jy...j, and k = Ky ...k, in binary, then
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Efficient Quantum Fourier Transform for N = 2°
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We will use the following rotation gates

1 0]
Rs :( 0 e2ri/2° )

noting that Ry and preparing the uniform superposition \%(IO} + [1)) can be performed jointly
using a Hadamard gate H. Arranging these Hadamard gates and controlled versions of the

above rotations so that we only Hadamard transform a bit after all its corresponding controlled
rotations are done, we get the following circuit for QFT:
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The general case n > 3 is analogous.




The Hidden Subgroup Problem for
Abelian Groups

Review of Chapter 6 of Ronald de Wolf’s Quantum Computing lecture notes
https://arxiv.org/abs/1907.09415v5
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Fourier transform on (finite) groups

Representation theory basics

Representation theory uses linear algebra to study groups.

> Given a (finite) group G we call a homomorphism ¢: G — C%? into the multiplicative
group of d x d complex matrices a d-dimensional representation.

> A representation ¢ is irreducible iff no non-trivial subspace is invariant under all linear
maps (matrices) in the image of ¢.

> A 1-dimensional representation y is called a character. Note that y(e) = x(e?) = x(e)?,
therefore 1 = y(e) = x(g'®") = x(g)'® implying that x(g) is a |G|-th root of unity Vg € G.

> For an Abelian group G, all irreducible representations are 1-dimensional, and there are
|G| different such representations (characters).

Character group of Abelian groups
The 1-dimensional representations of G form a group G under point-wise multiplication, called
the character group.

> Let,xy: G — C be 1-dimensional representations, then the point-wise multiplication
yields (¢ - x)(9) = ¢(9) - x(9)-



Fourier transform on finite Abelian groups

Cyclic groups
> The k-th column of Fy is essentially a character yx such that yx(j) := VN(Fn)x = w’ﬁ.
Then xk(j+Jj) = wf\’,ﬂ')k = xx(/)xk(j’) is indeed a 1-dimensional representation.

» Thus we can consider Fy: |k) — \/Lnl)(k) amap G — G (which is a homomorphism).

Finite Abelian groups in general
> Any Abelian group G has |G| characters that are also orthogonal to each other.

> The "Basis Theorem" from group theory states that every finite Abelian groups is in fact
isomorphic to a product (or direct sum in additive notation) of cyclic groups

GEZM XZN2 X---XZM.
> The characters of G are then simply the (tensor) products of their cyclic components
G2y XZnyX---x2Zy and Fg=Fy, ® Fn, ® -~ ® Fy,.

> For example Fzy is H®".



The (Abelian) Hidden Subgroups Problem

The Hidden Subgroup Problem (HSP)
> Given a function f: G — X that hides the subgroup H < G, i.e., f(g1) = f(g) iff
g1H = goH find H with a few queries to f.
> Equivalently, f is an injective function on cosets.

An efficient quantum algorithm for Abelian HSP
> deG ﬁ|g> — — QFTg
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"Decoding” the Abelian HSP

How to use the measurement outcome of the first register?
» What is the outcome of the measurement on the final state?
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> For the last equality note that x4 restricted to H is a character of H, and let H* < G be the
subgroup of characters that are constant-1 on H:

. | IHI ifxge€ H*+
heH heH

> Thus we obtain a uniformly random g such that x4 € H*.

» Each such g gives a linear constraint on H (since y4(h) = 1 for all h € H). Collecting a
few such g uniquely determines H.



The non-Abelian HSP

What works and what does not

> QFTg is somewhat harder to define and implement
> Unclear how to efficiently recover the subgroup
» However, the same algorithm is actually query efficient (Barnum & Knill 2002)

> Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell,
Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (lvanyos, Sanselme,
Santha 2007), and certain semidirect product p-groups of constant nilpotency class
(lvanyos, Santha 2015)

> Kuperberg’s algorithm (2003) solves HSP in the dihedral group in time
50(Vieg(i@)

Important example: Graph isomorphism (i.e., deciding whether G ~ G’)
> Group: S,,, Function: permute the vertices of GU G’

» Subgroup: Automorphisms of GU G’
> Output: whether there is a generator interchanging vertices of G and G’



