
Quantum Computation Graduate Summer School Park City Mathematics Institute

Quantum Fourier transform beyond Shor’s algorithm: Exercise Sheet 4
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Feel free to skip exercises that you find too easy or hard. On the last page you can find some
hints where indicated by (H).

Exercises

1.) A Markov chain can be described as a walk on a graph. What does the detailed balance condition

Pjiπi = Pijπj

tell about the transfer of “probability mass” along the edges? Prove that if the Markov chain
P satisfies the above detailed balance condition with respect to the distribution π, then π is a
fixed point, i.e., Pπ = π.

2.) Prove that the Metropolis rule applied to a symmetric Markov chain P = P T :

• if τz′ ≥ τz accept the move,

• if τz′ < τz reject the move with probability 1− τz′
τz
,

ensures that the modified Markov chain P (τ) is detailed balanced with respect to τ .

3.) Based on the above how would you define detailed balance for infinitesimal generators L (Lapla-
cians)? What does detailed balance imply about Lπ, and etLπ?

4.) Compute the operator Fourier transform of the operator K ← H, with respect to the Hamilto-
nian H ← π

2Z with F2 as the discrete Fourier transform. Compute H(0) and H(1). Verify that
(H(0))† ·H(0) + (H(1))† ·H(1) = I.

|+⟩ QFT2

∑
ω∈{0,1}|ω⟩⊗

exp(−iπ2Zt) H exp(iπ2Zt) H(ω)

5.) (H) Decompose a unitary U according to the Bohr frequencies ∆ of any Hamiltonian H. Show
that

∑
∆∈B(U

(∆))† · U (∆) = I.
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Hints

Exercise 5: First consider the case when all Bohr-frequency corresponds to a single pair of eigenstates. Then
study what happens when you “group” several pairs of eigenstates into a Bohr frequency ∆.


