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András Gilyén (Alfréd Rényi Institute of Mathematics)

July 17, 2023

The first 5 exercises are from Ronald de Wolf’s lecture notes [dW19, Chapter 4 Exercises 1, 2,
3, 4, 6]. Feel free to skip exercises that you find too easy or hard. On the last page you can find
some hints where indicated by (H).

Exercises

1.) For ω = e−2πi/3 and F3 =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

, calculate F3

 0
1
0

 and F3

 1
ω2

ω

.

2.) (H) The total variation distance between two probability distributions P and Q on the same
set, is defined as dTV D(P,Q) = 1

2

∑
i|P (i)−Q(i)|. An equivalent alternative way to define this:

dTV D(P,Q) is the maximum, over all events E, of |P (E) − Q(E)|. Hence dTV D(P,Q) is small
iff all events have roughly the same probability under P and under Q.

The Euclidean distance between two states |ϕ⟩ =
∑

i αi|i⟩ and |ψ⟩ =
∑

i βi|i⟩ is defined as
∥|ϕ⟩ − |ψ⟩∥ =

√∑
i |αi − βi|2. Assume the two states are unit vectors. Suppose the Euclidean

distance is small: ∥|ϕ⟩ − |ψ⟩∥ = ϵ. If we measure |ϕ⟩ in the computational basis then the
probability distribution over the outcomes is given by the |αi|2, and if we measure |ψ⟩ then
the probabilities are |βi|2. Show that these distributions are close: the total variation distance
1
2

∑
i

∣∣|αi|2 − |βi|2
∣∣ is ≤ ϵ.

3.) (H) The operator norm of a matrix A is defined as ∥A∥ = max
v:∥v∥=1

∥Av∥.

An equivalent definition is that ∥A∥ is the largest singular value of A.

The distance between two matrices A and B is defined as ∥A−B∥.

a.) What is the distance between the 2× 2 identity matrix and the phase-gate

(
1 0
0 eiϕ

)
?

b.) What is the distance between the 4 × 4 identity matrix and the controlled version of the
phase gate of (a)?

c.) What is the distance between the 2n×2n identity matrix I2n and the controlled phase gate
of (b) tensored with I2n−2?

d.) Suppose we have a product of n-qubit unitaries U = UTUT−1 · · ·U1 (for instance, each Ui

could be an elementary gate on a few qubits, tensored with identity on the other qubits).
Suppose we drop the j-th gate from this sequence: U ′ = UTUT−1 · · ·Uj+1Uj−1 · · ·U1. Show
that ∥U ′ − U∥ = ∥I − Uj∥.

e.) Now we also drop the k-th unitary: U ′′ = UTUT−1 · · ·Uj+1Uj−1 · · · · · ·Uk+1Uk−1 · · ·U1.
Show that ∥U ′′ − U∥ ≤ ∥I − Uj∥+ ∥I − Uk∥.

f.) Give a quantum circuit with O(n log n) elementary gates that has distance less than 1/n
from the Fourier transform F2n .

Comment: The above exercise shows the important fact that if we have a quantum circuit C that has various

subparts (“subroutines”), then a circuit C̃ where those subroutines are implemented with small operator-norm

error, rather than perfectly, still works well: if
∥∥∥C − C̃

∥∥∥ is small then (by definition of operator norm) for all

initial states |ϕ⟩ the states C|ϕ⟩ and C̃|ϕ⟩ are close in Euclidean distance. By Exercise 2 then also the final output

distributions are close (in total variation distance).
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4.) Prove that the Fourier coefficients of the convolution of vectors a and b are the product of
the Fourier coefficients of a and b. In other words, prove that for every a, b ∈ RN and every

ℓ ∈ {0, . . . , N − 1} we have
(
â ∗ b

)
ℓ
= âℓ · b̂ℓ. Here the Fourier transform â is defined as the

vector FNa, and the ℓ-entry of the convolution-vector a ∗ b is (a ∗ b)ℓ = 1√
N

∑N−1
j=0 ajb(ℓ−j)modN .

5.) a.) The squared Fourier transform, F 2
N , turns out to map computational basis states to com-

putational basis states. Describe this map, i.e., determine to which basis state a basis state
|k⟩ gets mapped for each k ∈ {0, 1}n.

b.) Show that F 4
N = I. What can you conclude about the eigenvalues of FN?

6.) Show that the quantum circuit for FN implies the famous fast Fourier transform result:∗ when
N = 2n, one can compute the Fourier transform of a vector in time O(N log(N)) (which is much
better than näıve matrix-vector multiplication that would result in running time O

(
N2

)
.)

7.) (H) Show that the following are special cases of the hidden subgroup problem:

a.) Simon’s problem: given f : {0, 1}n → {0, 1}n such that f(x) = f(y) iff x = y of x = y ⊕ s
for some fixed s ∈ {0, 1}n, find s with a few queries to f .

b.) Period finding: given f : Z → {0, 1}n such that f(a) = f(b) iff a ≡ b mod r, for some fixed
r ∈ N, find r with a few queries to f .

c.) (H) Discrete logarithm: given a generator γ of a cyclic multiplicative group C of size N
(i.e., C = {γa | a ∈ {0, 1, . . . , N − 1}}), and A ∈ C, find the unique a ∈ {0, 1, . . . , N − 1}
such that γa = A.

d.) Generalized discrete logarithm: given generators γ1, γ2, . . . , γt of the Abelian group G =
⟨γ1⟩ ⊕ ⟨γ2⟩ ⊕ · · · ⊕ ⟨γt⟩, where we use additive notation and ⊕ denotes the (internal) direct
sum, and A ∈ G, find the unique ai ∈ {0, 1, . . . , |⟨γi⟩| − 1} such that

∑t
i=1 aiγi = A.

Optional difficult exercises, assuming familiarity with phase estimation, amplitude
amplification and Shor’s algorithm:

8.) (H) Give an efficient exact algorithm for quantum Fourier transform overt ZN for arbitrary
N ∈ N.†

9.) (H) Suppose we have a generating set of a finite Abelian group, and we can perform group
operations (inversion and addition), and every element of G has a unique encoding (binary
representation).

a.) Give an efficient quantum algorithm‡ that decomposes the group as

G = ⟨γ1⟩ ⊕ ⟨γ2⟩ ⊕ · · · ⊕ ⟨γt⟩

in terms of generators γ1, γ2, . . . , γt and determines the order of each element γi. This
means that the G ≃ Z|⟨γ1⟩| × Z|⟨γ2⟩| × · · · × Z|⟨γt⟩|.

b.) Show that if you could efficiently solve the above problem using a classical algorithm, then
you could break the RSA encryption.

c.) Give an efficient quantum algorithm for quantum Fourier transform over the group G.

∗FFT works for more general N , but here we only study the case N = 2n for simplicity.
†This problem was first solved by Mosca and Zalka.
‡This problem was first solved by Cheung and Mosca.
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Hints

Exercise 2: Use
∣∣|αi|2 − |βi|2

∣∣ = ∣∣|αi| − |βi|
∣∣ · ∣∣|αi|+ |βi|

∣∣ and the Cauchy-Schwarz inequality.

Exercise 3.e: Use triangle inequality.

Exercise 3.f: Drop all phase-gates with small angles ϕ < 1/n3 from the O
(
n2

)
-gate circuit for F2n . Cal-

culate how many gates are left in the circuit, and analyze the distance between the unitaries
corresponding to the new circuit and the original circuit.

Exercise 7: You can find the solution to parts a.)-c.) in [dW19, Chapter 6].

Exercise 7.c: Use G = ZN × ZN and define f(x, y) := γxA−y.

Exercise 8: First prepare the state |j⟩ → |j⟩ ⊗ QFTN |j⟩, then uncompute the first state using phase es-
timation approximately. Use amplitude amplification to make the operation exact. If still
stuck follow the strategy outlined in the paper of Mosca and Zalka https://arxiv.org/abs/

quant-ph/0301093.

Exercise 9: First find a generating set each having prime order using period finding and Shor’s algorithm.
The subgroups of elements generated by different primes are distinct (apart from the unit el-
ement), so it suffices to decompose these further – this last part is challenging and provides a
proof of the ”Basis Theorem” of finite Abelian groups – if still stuck follow the strategy outlined
in Andrew Child’s lecture notes (Chapter 6 of https://www.cs.umd.edu/~amchilds/qa/).
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