Feel free to skip exercises that you find too easy or hard.

Exercises

1.) Finding marked elements using quantum walks. Given a symmetric (or reversible) Markov chain P, its largest eigenvalue λ_{1} is always 1 . Suppose its second largest (in absolute value) eigenvalue λ_{2} satisfies $\left|\lambda_{2}\right| \leq 1-\delta$, and the probability that a vertex v is marked in the stationary distribution π is at least ε. It is known that under these conditions the hitting time of marked elements is at most $\frac{2}{\varepsilon \delta}$ Gil14, Corollary 17]. Szegedy showed how to find a marked element in roughly the square root of this complexity using a quantum walk algorithm.

- As noted earlier, an intriguing property of Chebyshev polynomials is that [SV14]

$$
x^{t}=\sum_{i=0}^{t} 2^{-t}\binom{t}{i} T_{|2 i-t|}(x)
$$

By the Chernoff bound it follows that there is a parity- t degree $\mathcal{O}(\sqrt{t \log (1 / \varepsilon)})$-degree polynomial $p(x)$ such that $p(x) \in[-1,1]$ and $\left|p(x)-x^{t}\right| \leq \varepsilon$ for all $x \in[-1,1]$. Show that you can reduce all eigenvalues of P to less than ε via Quantum Eigenvalue Transformation with $\mathcal{O}(\sqrt{t \log (1 / \varepsilon)})$ uses of a block-encoding of P while keeping $\lambda_{1} \geq 1-\varepsilon$. As you will show in the homework it implies that it is possible to implement and ε-approximation of a block-encoding of $\Pi:=|\sqrt{\pi}\rangle\langle\sqrt{\pi}|$ where $|\sqrt{\pi}\rangle$ with similar complexity.

- Given a block-encoding U_{Π} of the orthogonal projector $\Pi=\left(\left\langle 0^{a}\right| \otimes I\right) U_{\Pi}\left(\left|0^{a}\right\rangle \otimes I\right)$ implement the reflection operator $(2 \Pi-I)$ with a few uses of U_{Π} and U_{Π}^{\dagger}.
- Give an algorithm inspired by Grover search that can find a marked element with $\mathcal{O}(1 / \sqrt{\varepsilon})$ uses of $(2 \Pi-I)$ starting from $\sqrt{\pi}$. Argue why it leads to an $\widetilde{\mathcal{O}}(\log (1 / \varepsilon) / \sqrt{\varepsilon \delta})$ algorithm for finding a marked element.
2.) Fixed-point amplitude amplification. Suppose A is a quantum circuit that prepares some n qubit state $|\psi\rangle$, i.e., $A:\left|0^{n}\right\rangle \mapsto|\psi\rangle=\sqrt{1-p}|0\rangle|G\rangle+\sqrt{p}|1\rangle|B\rangle$, where $|G\rangle$ and $|B\rangle$ are some ($n-1$)-qubit pure states and $p \geq \theta$ for some known $\theta>0$.
- You might use the fact that there is an odd polynomial $P(x)$ of degree $\mathcal{O}\left(\frac{1}{\theta} \log (1 / \varepsilon)\right)$ such that $P(x) \geq 1-\varepsilon$ for $x \in[\theta, 1]$ and $P(x) \in[-1,1]$ for all $x \in[-1,1]$.
- Give a quantum circuit U that acts as $A:\left|0^{n}\right\rangle \mapsto\left|G^{\prime}\right\rangle$ where $\|\left|G^{\prime}\right\rangle-|0\rangle|G\rangle \| \leq \varepsilon$ regardless the value of $p \geq \theta$ and uses A and A^{\dagger} only $\mathcal{O}\left(\frac{1}{\theta} \log (1 / \varepsilon)\right)$ times.
3.) Moore-Penrose generalized (pseudo) inverse: for every $A \in \mathbb{C}^{n \times d}$ there is a unique matrix $A^{+} \in$ $\mathbb{C}^{d \times n}$ that satisfies the following 4 properties. $A A^{+} A=A, A^{+} A A^{+}=A^{+},\left(A A^{+}\right)^{\dagger}=\left(A A^{+}\right)$, and $\left(A^{+} A\right)^{\dagger}=\left(A^{+} A\right)$. (Therefore if A is invertible then $A^{+}=A^{-1}$.)
- Show that if $A=\sum_{\sigma_{i}>0} \sigma_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$ is a singular value decomposition, then $A^{+}=\sum_{\sigma_{i}>0} \frac{1}{\sigma_{i}}\left|v_{i}\right\rangle\left\langle w_{i}\right|$.

References

[Gil14] András Gilyén. Quantum walk based search methods and algorithmic applications. Master's thesis, Eötvös Loránd University, 2014.
[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. Faster algorithms via approximation theory. Found. Trends Theor. Comput. Sci., 9(2):125-210, 2014.

