Feel free to skip exercises that you find too easy or hard.

Exercises

- 1.) Finding marked elements using quantum walks. Given a symmetric (or reversible) Markov chain P, its largest eigenvalue λ_1 is always 1. Suppose its second largest (in absolute value) eigenvalue λ_2 satisfies $|\lambda_2| \leq 1-\delta$, and the probability that a vertex v is marked in the stationary distribution π is at least ε . It is known that under these conditions the hitting time of marked elements is at most $\frac{2}{\varepsilon\delta}$ [Gil14, Corollary 17]. Szegedy showed how to find a marked element in roughly the square root of this complexity using a quantum walk algorithm.
 - As noted earlier, an intriguing property of Chebyshev polynomials is that [SV14]

$$x^{t} = \sum_{i=0}^{t} 2^{-t} \binom{t}{i} T_{|2i-t|}(x)$$

By the Chernoff bound it follows that there is a parity-*t* degree $\mathcal{O}\left(\sqrt{t\log(1/\varepsilon)}\right)$ -degree polynomial p(x) such that $p(x) \in [-1, 1]$ and $|p(x) - x^t| \leq \varepsilon$ for all $x \in [-1, 1]$. Show that you can reduce all eigenvalues of *P* to less than ε via Quantum Eigenvalue Transformation with $\mathcal{O}\left(\sqrt{t\log(1/\varepsilon)}\right)$ uses of a block-encoding of *P* while keeping $\lambda_1 \geq 1 - \varepsilon$. As you will show in the homework it implies that it is possible to implement and ε -approximation of a block-encoding of $\Pi := |\sqrt{\pi}\rangle \langle \sqrt{\pi}|$ where $|\sqrt{\pi}\rangle$ with similar complexity.

- Given a block-encoding U_{Π} of the orthogonal projector $\Pi = (\langle 0^a | \otimes I) U_{\Pi}(|0^a \rangle \otimes I)$ implement the reflection operator $(2\Pi - I)$ with a few uses of U_{Π} and U_{Π}^{\dagger} .
- Give an algorithm inspired by Grover search that can find a marked element with $\mathcal{O}(1/\sqrt{\varepsilon})$ uses of $(2\Pi I)$ starting from $\sqrt{\pi}$. Argue why it leads to an $\widetilde{\mathcal{O}}\left(\log(1/\varepsilon)/\sqrt{\varepsilon\delta}\right)$ algorithm for finding a marked element.
- **2**.) Fixed-point amplitude amplification. Suppose A is a quantum circuit that prepares some nqubit state $|\psi\rangle$, i.e., $A: |0^n\rangle \mapsto |\psi\rangle = \sqrt{1-p}|0\rangle|G\rangle + \sqrt{p}|1\rangle|B\rangle$, where $|G\rangle$ and $|B\rangle$ are some (n-1)-qubit pure states and $p \ge \theta$ for some known $\theta > 0$.
 - You might use the fact that there is an odd polynomial P(x) of degree $\mathcal{O}(\frac{1}{\theta}\log(1/\varepsilon))$ such that $P(x) \ge 1 \varepsilon$ for $x \in [\theta, 1]$ and $P(x) \in [-1, 1]$ for all $x \in [-1, 1]$.
 - Give a quantum circuit U that acts as $A: |0^n\rangle \mapsto |G'\rangle$ where $|||G'\rangle |0\rangle|G\rangle|| \leq \varepsilon$ regardless the value of $p \geq \theta$ and uses A and A^{\dagger} only $\mathcal{O}(\frac{1}{\theta}\log(1/\varepsilon))$ times.
- **3**.) Moore-Penrose generalized (pseudo) inverse: for every $A \in \mathbb{C}^{n \times d}$ there is a unique matrix $A^+ \in \mathbb{C}^{d \times n}$ that satisfies the following 4 properties. $AA^+A = A$, $A^+AA^+ = A^+$, $(AA^+)^{\dagger} = (AA^+)$, and $(A^+A)^{\dagger} = (A^+A)$. (Therefore if A is invertible then $A^+ = A^{-1}$.)
 - Show that if $A = \sum_{\sigma_i > 0} \sigma_i |w_i\rangle \langle v_i|$ is a singular value decomposition, then $A^+ = \sum_{\sigma_i > 0} \frac{1}{\sigma_i} |v_i\rangle \langle w_i|$.

References

- [Gil14] András Gilyén. Quantum walk based search methods and algorithmic applications. Master's thesis, Eötvös Loránd University, 2014.
- [SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. Faster algorithms via approximation theory. Found. Trends Theor. Comput. Sci., 9(2):125–210, 2014.