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Feel free to skip exercises that you find too easy or hard.

Exercises

1.) Finding marked elements using quantum walks. Given a symmetric (or reversible) Markov chain
P , its largest eigenvalue λ1 is always 1. Suppose its second largest (in absolute value) eigenvalue
λ2 satisfies |λ2| ≤ 1−δ, and the probability that a vertex v is marked in the stationary distribution
π is at least ε. It is known that under these conditions the hitting time of marked elements is
at most 2

εδ [Gil14, Corollary 17]. Szegedy showed how to find a marked element in roughly the
square root of this complexity using a quantum walk algorithm.

� As noted earlier, an intriguing property of Chebyshev polynomials is that [SV14]
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)
T|2i−t|(x).

By the Chernoff bound it follows that there is a parity-t degree O
(√

t log(1/ε)
)
-degree

polynomial p(x) such that p(x) ∈ [−1, 1] and |p(x)− xt| ≤ ε for all x ∈ [−1, 1]. Show that
you can reduce all eigenvalues of P to less than ε via Quantum Eigenvalue Transformation

with O
(√

t log(1/ε)
)
uses of a block-encoding of P while keeping λ1 ≥ 1− ε. As you will

show in the homework it implies that it is possible to implement and ε-approximation of a
block-encoding of Π := |

√
π⟩⟨

√
π| where |

√
π⟩ with similar complexity.

� Given a block-encoding UΠ of the orthogonal projector Π = (⟨0a|⊗I)UΠ(|0a⟩⊗I) implement

the reflection operator (2Π− I) with a few uses of UΠ and U †
Π.

� Give an algorithm inspired by Grover search that can find a marked element with O(1/
√
ε)

uses of (2Π− I) starting from
√
π. Argue why it leads to an Õ

(
log(1/ε)/

√
εδ
)
algorithm

for finding a marked element.

2.) Fixed-point amplitude amplification. Suppose A is a quantum circuit that prepares some n-
qubit state |ψ⟩, i.e., A : |0n⟩ 7→ |ψ⟩ =

√
1− p|0⟩|G⟩ + √

p|1⟩|B⟩, where |G⟩ and |B⟩ are some
(n− 1)-qubit pure states and p ≥ θ for some known θ > 0.

� You might use the fact that there is an odd polynomial P (x) of degree O
(
1
θ log(1/ε)

)
such

that P (x) ≥ 1− ε for x ∈ [θ, 1] and P (x) ∈ [−1, 1] for all x ∈ [−1, 1].

� Give a quantum circuit U that acts as A : |0n⟩ 7→ |G′⟩ where ∥|G′⟩ − |0⟩|G⟩∥ ≤ ε regardless
the value of p ≥ θ and uses A and A† only O

(
1
θ log(1/ε)

)
times.

3.) Moore-Penrose generalized (pseudo) inverse: for every A ∈ Cn×d there is a unique matrix A+ ∈
Cd×n that satisfies the following 4 properties. AA+A = A, A+AA+ = A+, (AA+)† = (AA+),
and (A+A)† = (A+A). (Therefore if A is invertible then A+ = A−1.)

� Show that ifA =
∑

σi>0 σi|wi⟩⟨vi| is a singular value decomposition, thenA+ =
∑

σi>0
1
σi
|vi⟩⟨wi|.
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