2023 Quantum Computing Homework Nr. 9

András Gilyén

November 17, 2023

Homework exercises - you can earn 10 points in total! The first two exercises are worth $2+3$ points respectively, while the last is worth $5=1+2+2$. On the last page you can find some hints where indicated by (H).

Reminder

Let $A=\sum_{i=1}^{d} \sigma_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$ be a singular value decomposition of A, i.e., $v_{i}: i \in\{1,2, \ldots, d\}$ are orthonormal vectors as well as $w_{i}: i \in\{1,2, \ldots, d\}$, and the singular values $0 \leq \sigma_{i}: i \in\{1,2, \ldots, d\}$ are ordered decreasingly.

Theorem 1 (Quantum Singular Value Transformation (QSVT) GSLW19]). Let $P:[-1,1] \mapsto[-1,1]$ be a degree-d odd polynomial map. Suppose that U is a block-encoding of $A=\left(\left\langle 0^{a}\right| \otimes I\right) U\left(\left|0^{b}\right\rangle \otimes I\right)$. Then $V:=(H \otimes I) U_{\Phi}(H \otimes I)$ is a block-encoding of

$$
\begin{equation*}
\sum_{i=1}^{d} P\left(\sigma_{i}\right)\left|w_{i}\right\rangle\left\langle v_{i}\right|=\left(\left\langle 0^{a+1}\right| \otimes I\right) V\left(\left|0^{b+1}\right\rangle \otimes I\right), \tag{1}
\end{equation*}
$$

where $\Phi \in \mathbb{R}^{d}$ is efficiently computable from P and U_{Φ} is the following circuit.**

Exercises

1.) Show that the operator norm of A is $\|A\|=\sigma_{1}$.
2.) Let $f: \mathbb{R} \rightarrow \mathbb{C}$, and $P \in \mathbb{C}[x]$ a polynomial such that $|f(x)-P(x)| \leq \varepsilon$ for all $x \in S \subseteq \mathbb{R}$. Suppose that the singular values of A are elements of the set $\sigma_{i} \in S$ for all $i \in\{1,2, \ldots, d\}$. Show that $B:=\sum_{i=1}^{d} f\left(\sigma_{i}\right)\left|w_{i}\right\rangle\left\langle v_{i}\right|$ and $\widetilde{B}:=\sum_{i=1}^{d} P\left(\sigma_{i}\right)\left|w_{i}\right\rangle\left\langle v_{i}\right|$ are ε-close, i.e., $\|B-\widetilde{B}\| \leq \varepsilon$.
3.) This exercise shows how to solve a linear equation of the form $A x=b$, when the equation might be under/over-determined. The least square solution is given by $A^{+} b$, where A^{+}is the Moore-Penrose pseudoinverse of A defined as $A^{+}:=\sum_{i: \sigma_{i} \neq 0} \frac{1}{\sigma_{i}}\left|v_{i}\right\rangle\left\langle w_{i}\right|$.
(a) Suppose that U is a block-encoding of A, s.t., $A=(\langle 0| \otimes I) U(|0\rangle \otimes I)$, and $\left\|A^{+}\right\| \leq \kappa$. Describe a bounded set S that contains the singular values of any such matrix A, but is disjoint from some interval of the form $(0, a)$ for some $a>0$. What is the largest a that we can choose?

[^0](b) Construct an approximate block-encoding V of $A^{+} /(2 \kappa)$ such that
$$
\left\|A^{+} /(2 \kappa)-(\langle 00| \otimes I) V(|00\rangle \otimes I)\right\| \leq \varepsilon,
$$
and V uses $\mathcal{O}(\kappa \log (1 / \varepsilon))$-times the block-encoding U and its inverse U^{\dagger}. (H)
(c) Assume for simplicity that $A^{+} /(2 \kappa)=(\langle 00| \otimes I) V(|00\rangle \otimes I)$ holds exactly. Suppose that W is a quantum circuit that maps $\left|0^{n}\right\rangle \rightarrow|b\rangle$. Give a quantum algorithm that prepares a quantum state proportional to $A^{+}|b\rangle$ with high probability with $\mathcal{O}(\kappa)$ uses of the quantum circuits V and W. What does it tell us about the complexity of preparing a quantum state proportional to the least-square solution $A^{+}|b\rangle$ given the block-encoding of A ?

Hints

Exercise 3b: You can use the following polynomial approximation result [Gil19, Corollary 3.4.13.] without proof: for every $\kappa>1$ and $\varepsilon<1$ there is an odd polynomial $P \in \mathbb{R}[x]$ of degree $\mathcal{O}(\kappa \log (1 / \varepsilon))$, such that $|P(x)| \leq 1$ for all $x \in[-1,1]$, and $|P(x)-1 /(2 \kappa x)| \leq \varepsilon$ for all $x \in[1 / \kappa, 1]$.

References

[Gil19] András Gilyén. Quantum Singular Value Transformation \mathcal{E}^{2} Its Algorithmic Applications. PhD thesis, University of Amsterdam, 2019.
[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st ACM Symposium on the Theory of Computing (STOC), pages 193-204, 2019. arXiv: 1806.01838

[^0]: ${ }^{*}$ The empty dots denote control on the state $|0\rangle$. The generalized $C N O T /$ Toffoli gates are controlled by $\left|0^{a}\right\rangle$ and $\left|0^{b}\right\rangle$ on the right- and left-hand sides of U respectively in the circuit - in this example circuit $a=3, b=2$.

