2023 Quantum Computing Homework Nr. 8

András Gilyén

November 11, 2023

Homework exercises - you can earn $10(+2)$ points in total! The second exercise is worth $2(+2)$ points while the others 4 . On the last page you can find some hints where indicated by (\mathbf{H}).

Reminder

Recall the Spectral Theorem (Fötengely Tétel in Hungarian): for every self-adjoint matrix $A \in \mathbb{C}^{d \times d}$ there exists a unitary $V \in \mathbb{C}^{d \times d}$ that diagonalizes A, i.e., $A=V \cdot D \cdot V^{\dagger}$ where $D \in \mathbb{R}^{d \times d}$ is a diagonal matrix containing the eigenvalues of A, and the columns of V are the corresponding eigenvectors. Let $\left|v_{i}\right\rangle$ be the i-th column of V and let λ_{i} be the i-th diagonal entry of D. In Dirac notation we can write this eigenvalue decomposition as $A=\sum_{i=0}^{d-1} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$.

Exercises

1.) A generalization of the Spectral Theorem for arbitrary matrices is called Singular Value Decomposition. This exercise walks you through a proof of this generalization by a reduction to the above spectral theorem. Let $A \in \mathbb{C}^{k \times d}$.
(a) Show that $A^{\dagger} A$ is self-adjoint and all of its eigenvalues are ≥ 0, so there is an eigenvalue decomposition $A^{\dagger} A=\sum_{i=0}^{d-1} \sigma_{i}^{2}\left|v_{i}\right\rangle\left\langle v_{i}\right|$, where $\sigma_{i} \geq 0$ and the vectors $\left|v_{i}\right\rangle$ are orthonormal.
(b) Show that $\left\{\left|w_{i}\right\rangle:=A\left|v_{i}\right\rangle / \sigma_{i}: \sigma_{i}>0\right\}$ form an orthonormal system of vectors.
(c) Show that $A=\sum_{i: \sigma_{i} \neq 0} \sigma_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$.
(d) Show that there exists unitaries $V \in \mathbb{C}^{d \times d}, W \in \mathbb{C}^{k \times k}$ and a diagonal matrix $\Sigma \in \mathbb{R}_{>0}^{k \times d}$ containing the numbers σ_{i} on the diagonal such that $A=W \cdot \Sigma \cdot V^{\dagger}$.

The decomposition in Exercise 1c Id is called Singular Value Decomposition. The numbers σ_{i} are called the singular values of A (usually ordered in decreasing order for convenience) and the vectors w_{i} and v_{i} are called the corresponding left and right singular vectors of A respectively.
2.) Linear combination of unitaries: Suppose that $A_{0}=\left(\left\langle 0^{a}\right| \otimes I\right) U_{0}\left(\left|0^{b}\right\rangle \otimes I\right)$ and $A_{1}=\left(\left\langle 0^{a}\right| \otimes\right.$ $I) U_{1}\left(\left|0^{b}\right\rangle \otimes I\right)$. Given $\alpha_{0}, \alpha_{1} \in \mathbb{R}$ such that $\left|\alpha_{0}\right|+\left|\alpha_{1}\right|=1$, construct a circuit that uses $U=|0\rangle\langle 0| \otimes U_{0}+|1\rangle\langle 1| \otimes U_{1}$ and two single qubit gates to implement a block-encoding V of $\alpha_{0} A_{0}+\alpha_{1} A_{1}$ such that

$$
\begin{equation*}
\left(\left\langle 0^{a+1}\right| \otimes I\right) V\left(\left|0^{b+1}\right\rangle \otimes I\right)=\alpha_{0} A_{0}+\alpha_{1} A_{1} . \tag{H}
\end{equation*}
$$

\star For 2 bonus points: construct a similar circuit in the general case $\alpha_{0}, \alpha_{1} \in \mathbb{C}$.
3.) From Ronald's lecture notes dW19, Chapter 9 Exercise 10]: Block-encoding an s-sparse Hermitian matrix A with $\|A\| \leq 1$ (see Section 9.4). Assume for simplicity that the entries of A are real.
(a) Show how to implement W_{1} using an $O_{A, l o c}$-query and a few other A-independent gates. For simplicity you may assume s is a power of 2 here, and you can use arbitrary single-qubit gates, possibly controlled by another qubit.
(Note that the same method allows to implement W_{3}.)
(b) Show how to implement W_{2} using an O_{A}-query, an O_{A}^{-1}-query, and a few other A-independent gates (you may use auxiliary qubits as long as those start and end in $|0\rangle$). Note that W_{2} just implements a rotation on the first qubit, by an angle that depends on $A_{k j}$. There's no need to write out circuits fully down to the gate-level here; it suffices if you describe the idea precisely.
(c) Show that the $\left(0^{n+1} i, 0^{n+1} j\right)$-entry of $W_{3}^{-1} W_{1}$ is $1 / s$ if $A_{i j} \neq 0$, and is 0 if $A_{i j}=0$.
(d) Show that the $\left(0^{n+1} i, 0^{n+1} j\right)$-entry of $W_{3}^{-1} W_{2} W_{1}$ is exactly $A_{i j} / s$.

Hints

Exercise 2. Remember from the lecture that $\left(\left\langle 0^{a+1}\right| \otimes I\right)(H \otimes I) U(H \otimes I)\left(\left|0^{b+1}\right\rangle \otimes I\right)=\frac{1}{2}\left(A_{0}+A_{1}\right)$. Replace the Hadamrd gates with appropriate single-qubit gates.

References

[dW19] Ronald de Wolf. Quantum computing: Lecture notes, 2019. arXiv: 1907.09415 v 5

