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One of the unique features of discrete-time quantum walks is called trapping, meaning the inability of the
quantum walker to completely escape from its initial position, although the system is translationally invariant.
The effect is dependent on the dimension and the explicit form of the local coin. A four-state discrete-time
quantum walk on a square lattice is defined by its unitary coin operator, acting on the four-dimensional coin
Hilbert space. The well-known example of the Grover coin leads to a partial trapping, i.e., there exists some
escaping initial state for which the probability of staying at the initial position vanishes. On the other hand,
some other coins are known to exhibit strong trapping, where such an escaping state does not exist. We present
a systematic study of coins leading to trapping, explicitly construct all such coins for discrete-time quantum
walks on the two-dimensional square lattice, and classify them according to the structure of the operator and the
manifestation of the trapping effect. We distinguish three types of trapping coins exhibiting distinct dynamical
properties, as exemplified by the existence or nonexistence of the escaping state and the area covered by the

spreading wave packet.
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I. INTRODUCTION

Discrete-time quantum walks [1,2] are nontrivial gener-
alizations of discrete-time classical walks. These elementary
constructs follow the rules of quantum mechanics and became
versatile tools in various field of physics (for reviews see
[3-8]). The motion of a single excitation in a solid state, the
spreading of quantum information in a quantum network, and
even quantum computation can be modeled by quantum walks
[9].

Recently, quantum walks have attracted interest as sim-
ple quantum simulators, modeling the behavior of quantum
particles under various conditions: The effect of decoherence
[10,11], electric fields [12,13], and percolation [14-20] were
studied in detail. Over the past decade, a number of state-of-
the-art experiments [7,13,21-34] were performed validating
the theoretical results and also benchmarking the achievable
degree of quantum control and visibility.

Quantum walks serve as an elementary model for trans-
port phenomena in physical systems. Spreading properties
of quantum walks significantly differ from classical random
walks. They can spread faster, thus speeding up the random-
walk-based search [35-38], leading to a number of possible
applications in quantum information [39]. Nevertheless, there
might be vertices which are almost never reached by the
walker due to destructive interference, leading to infinite
hitting times even for finite graphs [40,41]. However, for the
initial vertex the expected return time is always finite for a
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finite graph, as follows from a general results for discrete-
time unitary evolution [42]. The expected return time to the
exact initial state (state recurrence) is an integer [42]. This
holds even for iterated open quantum evolution, provided it
is described by a unital quantum channel [43]. The investi-
gation was later extended to a broader class of iterated open
quantum dynamics [44] and the result can be understood as a
generalization of the Kac lemma [45]. We note that in the case
of subspace recurrence, the expected return time is a rational
number [46].

Quantum walks are known for their typical ballistic spread-
ing [47]. However, for a quantum walk on a two-dimensional
lattice there exist some coins which lead to limited spreading
for some initial states. In particular, for a Grover coin one
can observe a probability peak situated at the origin of the
walk, discovered by Mackay et al. [48]. We will refer to this
property as trapping. Let us note that the term localization
is sometimes used for the same effect in the literature; how-
ever, localization [49] is often used in a different context,
e.g., in Anderson localization, a phenomenon arising from
spatial randomness [24,28,50-56], exponential localization
of topologically protected states [26,57,58], or oscillatory
localization [59]. The effect of trapping by a Grover coin
for discrete-time quantum walks on a two-dimensional (2D)
integer lattice was rigorously proven by Inui ez al. [60]. Impli-
cations of trapping for stationary measures of quantum walks
were discussed in [61,62]. We note that trapping is not limited
to the square lattice, but can be found in any d-dimensional
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lattice. For quantum walks on a line, nontrivial trapping coins
need to have at least three dimensions [63]. Trapping coins of
dimensions greater than 3 were also identified [64] and further
studied in [65,66]. Several extensions of the three-state Grover
coin featuring trapping were introduced [67] and investigated
in detail [61,68—70]. A full classification of three-dimensional
coins leading to trapping for a quantum walk on a line was
provided in [71]. Likewise, the trapping effect on a 2D integer
lattice is not limited to the Grover coin: A family of coins
with this property was introduced by Watabe et al. [72]. A
systematic search for coins exhibiting trapping revealed that
an even stronger type of trapping exists: It is possible that all
initially localized states remain trapped [73]. Although [73]
presented a multiple-parameter class of coins exhibiting one
or the other type of trapping, a complete classification was
lacking.

In this paper we construct and classify all trapping coin
operators for a discrete-time quantum walk on a 2D integer
lattice, based on the observation that the localized eigenstates
of the walk have a finite support, in fact, involving only
four lattice sites. We classify trapping coins according to
the possible dynamical behavior of the walk, with respect
to a walker starting from a single vertex. For the first class
of coins there always exists a trapped component, while the
spreading part of the wave function is approximately present
in an area characterized by a cross section of two distinct
ellipses. The form of the ellipses can be determined from the
parameters of the coin. For the second class of coins there
exists a unique escaping initial state which does not remain
trapped. The characteristic spreading pattern is also formed
by a cross section of two ellipses; however, in this case the
two ellipses may coincide. For the last type of trapping coins
the escaping states form a two-dimensional subspace and the
walk dynamics is essentially one dimensional.

The paper is organized as follows. In Sec. II we define our
model and introduce the effect of trapping. Section III focuses
on the action of the evolution operator on the stationary state.
We derive two mutually exclusive conditions, one of which
the trapping coin has to fulfill. The investigation of these two
cases is the subject of Sec. IV, where we derive the explicit
form of the trapping coin operators. The properties of the coin
classes are investigated in Sec. V. We focus on the existence
and uniqueness of the escaping state and the area covered by
the spreading part of the walk. We summarize our results in
Sec. VI. Finally, in the Appendix we prove that the localized
states can be decomposed into eigenstates supported on 2 x 2
regions of the lattice.

II. MODEL

Let us consider a four-state discrete-time quantum walk
on a two-dimensional square lattice. The Hilbert space of the
walk can be decomposed as

H="Hp®Hc, 6]

where H p is the position space spanned by the orthonormal set
{|x, y)} with x, y € Z indexing the positions on the lattice. The
coin space Hc is spanned by the orthonormal basis defining
possible movements of the particle to the left |L), down |D),
up |U), and right |R). A single step of the time evolution is

generated by the unitary operator
0=8-Up®0). 2

Here § is the shift operation responsible for the conditional
displacement, which is defined by its action on the basis states

S, WIL) = lx = 1L,y)IL), Sk, »)ID) = |x,y = 1)|D),
S, MUY = x,y+ DIU), Sk, y)IR) =[x +1,)IR).

In addition, /p is the identity on the position space. Finally, C
is the unitary coin operator acting only on the coin space Hc¢
and mixing the coin states in the following way:

Cljy=) Cyli), i, je{L,D,U,R). (3)
ij

The matrix representation C;; of the operator C in the standard
bases |L), |D), |U), |R) will be referred to as the coin C.
We emphasize that throughout the paper we use the indices
L, D, U, R for rows and columns of the coin C. For instance,
the matrix element Cgy corresponds to Cy3.

We consider initial states residing on a single vertex, which
we identify with the origin of the lattice without loss of
generality. We still have the freedom to choose the initial coin
state |W¢) € He, i.e., the complete form of the starting state
of the walk is given by

[¥(0)) =10, 0)|¥c).

The discrete-time evolution of the walk is given by repeating
the evolution operator on the initial state

[y @) = U1y (0)).

The state of the walk after ¢ steps can be decomposed into the
standard basis according to

@) =YD v,y Olx, )i,
xy i

where V;(x,y,t), i € {L, D, U, R}, are the amplitudes of the
particle at position (x,y) with coin state i. The probability
distribution on the square grid is given by

P(X, y:t) = h[/L(x’ y9t)|2 + |I//D(x’ y9t)|2
+ 1Yy (e, 3, OF + [¥r(x, y, 0]

Now we turn to the trapping of quantum walks on a square
grid, which is the central topic of our paper. We say that
a quantum-walk operator is trapping if there is an initial
coin state |Y¢) such that the long-time average probability of
finding the walker at the initial position is nonvanishing, i.e.,

T
1
im — § >
Th—>Holo T 2 P0,0,t) 2 p>0. €]

It was observed that under cyclic boundary conditions, trap-
ping requires a highly degenerate spectrum, featuring flat
bands [60]. This result was later extended, showing that for
a quantum walk on an infinite lattice a coin operator can
be trapping if and only if the evolution operator U has an
infinitely degenerate eigenvalue [74].

In the following we construct trapping coins based on
the properties of eigenstates corresponding to the degenerate
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FIG. 1. On the left we display a schematic representation of the stationary state |1p(0 9} The letters in circles denote the amplitudes of the
respective local coin states (9). On the right we show the stationary state after the application of the coin operator C, which acts on the local
coin states according to (10). The step operator 8 propagates the amplitudes in the direction of the arrow, thus returning the state € [y "%)

0,0
to [y ”).

eigenvalue. Since the global phase is irrelevant, we assume
without loss of generality that 1 is a degenerate eigenvalue, so
we will work with solutions of

Ulrg) = SUp @ O)rgy) = |¥y). )

In the Appendix we prove that the corresponding eigenstates
can be chosen such that they have support of size (at most)
2 x 2 on the lattice. Then a stationary eigenstate occupying
vertices (x,y), (x,y+ 1), @+ 1,y), and (x+1,y+ 1) can
be written in the form

[ &) = 1x, 1ECO) + |x, y + 1)[EOD)
+ I+ LES)Y 4 x+ 1,y + 1)1ECD). (6)

Here |€@7), i, j € {0, 1}, denote the local coin states which
are in general given by

€4D) = V1L + 57 1D) + E771U) + &VIR). (D)

Due to the translational invariance of the considered walk,
the local coin states |£/)) are independent of (x, y). Hence,
the stationary states [¥(’) have the same form for all
(x,y); only their support on the lattice is different. There-
fore, it is sufficient to consider only one of the stationary
states, e.g., |1/f(0 ) [We remark that due to chiral symmetry,
every eigenstate ) [x,y) %) has a chiral counterpart
Zx \( 1)* |x, y) |E%)) and the corresponding eigenvalues
differ by a factor of (—1) [75].]

In the following section we study the structure of the
stationary state |1ﬂ§,0 ‘0)) based on Eq. (5) in order to later
find all trapping coins of the four-state discrete-time quantum
walks on the two-dimensional lattice.

III. RESTRICTIONS ON THE AMPLITUDES OF TRAPPED
EIGENSTATES

Our first task in this section is to determine the possible
values of the 16 coefficients Si(m’") in Eq. (6). It turns out that
some of these coefficients have to be zero. Let us examine the

action of the inverse shift $~! on the stationary state WS(,O 0y,

From Eq. (5) we have
I @ O)|Y?) =8y P (8)

The left-hand side of this equation changes the coin states
without touching their positions. On the other hand, the right-
hand side changes only the positions. This equality cannot
hold if §~! steps out of the given 2 x 2 region. This eliminates
half of the coefficients defining the local coin states (7) of
the general stationary state (6). For notational convenience
we will denote the remammg potentially nonzero, coefficients

bya=£"0 p=£00 ¢ = 0D g =0V o= (0 =
,(Ql 0),g— I(JI D,andh = 1(?1 1>,1.e.,the local coin states have
the form

1§©0) =alL) + b|D),

1§Dy =c|L) 4+ d|U),

£0:9) =e|D) + fIR),

§D) =g|U) + hIR). 9

As illustrated by Fig. 1, in order to fulfill Eq. (8) the coin
operator C has to act on the local coin states |£™) in the
following way:

ClE®Y) =d|U) + fIR),
Clg*P) =b|D) + hIR),
Cle™Y) =alL) + glU),
Clg™Y) =c|L) + e|D). (10)
The relations (10) can be written in a matrix form as
a ¢c 0 O 0 0 a c¢
o F I PR
0 0 f h f h 0 0
A B
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where C is the specific coin matrix we are searching for and
the individual columns of the matrices A and B represent the
vectors on the left-hand side and the right-hand side in (10).
The 16 individual equations can be considered as detailed
balance conditions between the amplitudes of the stationary
state. Moreover, the matrix C has to be unitary, i.e., C fc=1I

J

lal* + bI> — |d|* = | fI? ca* —hf*
ac* — fh* e + 1d|* — |b]* — |h)?
be* —dg* 0
0 dg* — be*

After removing redundant equations from (12) one can see
that ATA —B'B =0 is equivalent to the following set of
equations:

la)* + |b]* = |d* + | fI% (13)
lgl* + [h* = |c* + |el?, (14)
lel> +1d|* = |b* + |hI?, (15)

J

le? +1d? =bI* + [P,

4-lal,

lal*|c® + lal’|d[* = |al*|b|* + |a*|A|*,
$ (lac| = |fhl),

|fP1A1* + lal*|d® = |al*|b]* + |al*|h],
¢

PSP = lal) =lal*(Ib]* = 1d]?),
$ [by (13)]

(111> = lal®)(If1* = lal*) =0,
¢ [by (13)=(15)]

I  either |a| = |h|and |c| = |f]
1I or J|a|l =|f|and |b| = |d|
and |c| = |h| and |g| = |el;

Since cases II on the left- and right-hand sides coincide, we
are left with two possibilities: either II,

lal =1f1, el =1Inl, |bl=Id], |gl=lel, (18)

orl,

lal = |hl,
|d| = lel

lel =171, lgl =1bl,
(while II does not hold). (19)

Now we can proceed using case separation based on which
one of the two sets of equations, (18) or (19), holds. As we will
show, these two cases correspond to whether detA = bcfg —
adeh is zero or not.

I  either

This leads us to the relation for the matrices A and B,
A"A—B'B=A'C'CA - B'B=B'B—B'B=0,

which can be written in a matrix form as

eb* — gd* 0
0 gd* — eb*

. =0. (12
e + 1f12 — laf* — |gP hf* — ca (12)

fh* —ac* 1> + k1> — |c|> — le]?

{

ac* = fh*, (16)
be* =dg*. 17

Equation (16) implies |ac| = |fh| and (17) implies |be| =
|dgl|, which gives

le? + 1d? = bI* + [P,

U-1gl%

gl lc® + 1g1°1d[* = I |bI* + Ig*|h I,
& (|be| = |dg)),

Ig1*lcl® + lel*|b* = gI*|bI* + Ig*|h[*,
¢

lgl*(lcl* = 1h1*) = 1bI*(IgI* — lel?),
¢ [by (14)]

(Igl* = 1b)(Igl* = lel*) =0,
¢ [by (13)~(15)]
gl = |bl and |d| = |e|

11 or

lgl = le| and [c| = |A]|
and  |b| = |d| and |a| = |f].

IV. CLASSIFICATION OF TRAPPING COINS

At the end of the preceding section we derived two mu-
tually exclusive conditions (18) and (19), which have to be
fulfilled for trapping coins. Based on these conditions, we
can construct all different types of trapping coins determined
by the rank of the matrix A. In order to provide a full
classification, we briefly study degenerate cases as well, even
if they lead to trivial dynamics.

A. Case I: detA is nonzero

This section is devoted to the description of trapping coins
corresponding to eigenstates satisfying Eq. (19). We refer to
this class of coins as type I. As we will see, in this case
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detA # 0, so the matrix A has full rank. Hence, there exists
an inverse matrix A~! and thus C is uniquely determined by

the amplitudes of Ws(,o ’0)) via Eq. (11) as follows:
C=BA""

(20)

Let us now turn to a particular parametrization of the
amplitudes. We assume, without loss of generality, that the
norm of the stationary state |1/f‘§?’0) ) is 2. Together with the
conditions (13), (14), and (19) this implies

la)* + |b]* = |d|* + |f]* = 1.

Therefore, we can write the magnitudes |a|, |b|, |d|, and | f| as
sine and cosine functions

la| = sind; = |h], |b] =cosé; = |g],

ey

le| =sindy = |f], |d| =cosédy = |e],

where 41, 8, € [0, 7 /2]. Note that §; # &, since we assume
that (18) does not hold. It is easy to see that this parametriza-
tion implies |bcfg| # |adeh| and therefore detA is indeed
nonzero.

J

Now we also parametrize the phases of the amplitudes
a,...,h. Foranx e C let ¢, € R denote its phase such that
x = |x|e"¥. Equation (16) shows that we can assume, without
loss of generality, that ¢, — ¢. = ¢y — ¢. Similarly, by (17)
we have that ¢, — ¢, = ¢s — ¢,. Since we can arbitrarily
choose the global phase of the stationary state, we also assume
¢, = 0. If some of the parameters are 0 then some phases
become irrelevant; nevertheless, the above assumptions do not
break generality. Thus the amplitudes can be parametrized as

a=s, b=cie®toe—90

c =Szei(¢h*¢f) d = cye'®

e=cre,  f =5,
h=s e,

g=cres, (22)

where s; = sin§; and ¢; = cos§; for i € {1,2} and §; # &>.
Then the explicit form of type I coins is given by

—ei(‘ﬁ"_d’b’)clcg e—ilbelez ei(¢lx_¢f_¢g)clsz e s 5152
B ol Gatetdr—b—ti) . ¢ —ei =g ¢ ei@=b)c ¢ elGe=b)g o
C =BA' = ' 152 e o 152 e esie 23)
a5 e ¢G99 e @55, @5
'%r 5152 ei(¢f'+¢g_¢d_¢e)clsz ei(¢11_¢d)s162 _ei(%—%)qq

The corresponding stationary states come in chirally symmet-
ric pairs that are proportional to

10,0 (s1 L) + 1€ %+?=%) | D))
£10, 1) (526" ?7|L) + 2 |U))
£ [1,0) (c2¢™ |D) + 526 |R))
+ (1, 1) (c1€ [U) + 51" |R)),

so the probability distribution of the stationary states is uni-
form across the 2 x 2 unit cell:
P(0,0)=P0,1)=P1,0)=P(1,1) = %.
In Sec. V we identify the degenerate cases 81, 8, € {0, Z}; the
degeneracy leads to two additional stationary states, but they

only differ by some complex phases. As an example, consider
the case §; = % and 5, = 0. The coin C; then becomes

0 e % 0 0

0 0 0 o' (@e—n)
s 0 0 0

0 0 e/ (@n—da) 0

and the stationary states become

el it oite

0,0)|L 0, )|U) + — 1, HIR) + —-|1,0)|D),
0. 0)IL) + == 10. DIU) + —7 L DIR) + —= [1. 0)ID)

corresponding to eigenvalues A € {1,i, —1, —i}. The other

case of §; =0 and 6, = % is analogous.

[
B. Case II: detA is zero

The remaining cases correspond to Eq. (18), which de-
scribes the situation when detA = 0. To see this, one can
multiply Egs. (16) and (17) to obtain

adc*g* = bfe*h*.
Multiplying both sides by cgeh, we get the equality
adeh|cg|* = befgleh|?.
Due to (18), this is further equivalent to

0 = |eh|* (bcfg — adeh),
————

detA

which implies that e or & or detA = 0. If one of the parameters
e or h is equal to zero, due to Eq. (18) also g or ¢ equals zero,
which results in detA = 0 as well. This case can be further
divided into two subcases depending on the rank of the matrix
A, which can be 3 or (at most) 2.

Before separating these cases we introduce a convenient
parametrization of the amplitudes that naturally fits case II.
Similarly to case I, we assume without loss of generality
that the norm of |1//S(,O ’0)) is /2, which together with Eq. (18)
enforces

lal® + |b]> + |c]* + le|* = 1.

We can also assume without loss of generality that the phase
of the parameter a is zero, and thus a € R. All such ampli-
tudes a, .. ., h satisfying Eqs. (16)—(18) can be parametrized
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[choosing sin?(8;) := |a|* + |c|*] as
a=s153, b=cjse/@tt—0)
c =513 P00 d = 1506,
e =cice'?, f= 5153€"%7
g =c1c2€%,  h = s1c3¢ ", 24)

where & € [0, w /2], s =sind;, and ¢ = cosd; for k =
1,2, 3.

1. Case Ila: Matrix A has rank 3

Let us now consider the situation when A has rank 3. We
refer to the corresponding class of coins as type Ila. In this
case A is not invertible and the amplitudes only determine
the coin up to a single phase parameter, in contrast to I. As
before, our starting point is Eq. (11), which implies that B
must also have rank 3. So we can find vectors v4 and vg such
that ||va]l = |jvg|l > 0, and v4A = 0 and vgB = 0. Since C
maps the orthogonal complement of the column space of A
to the orthogonal complement of the column space of B, we
must have that, for some n € (—n, 7],

Cvl = evf. (25)

Since A has rank 3, at least one of its columns must be linearly
dependent on the other columns. This column is therefore
redundant in Eq. (11) and it can be removed. Instead of
removing this column we replace it with Eq. (25), resulting

J

1=t Be2cys,
Co _el(¢d+¢z+¢f*¢g*¢h)EC1C3S1S2
Ila — iy
—e 7 HC18515253

€91 (14 Bcilsd)

Now we show that (30) describes all possible coins when
81 € (0, /2). Itis easy to see that in this case the rank of A is
indeed 3. Moreover, using our parametrization and canceling
common factors in v:f‘, we obtain

k
[Y, ") == c152 IL)
_ ei(¢d+¢f¢g)sl_g3 |D)

_ ei(¢d+¢/ —¢h)slc3 |U)

+ " ter=%)c ¢, |R), (31

a unit vector in the kernel of A", We can analogously define
|yrker). Replacing an appropriate column of A and B with these
vectors, one obtains (30) in all remaining cases involving
8 € {0, m/2} and/or 63 € {0, w /2}. Therefore, the formula
(30) covers all possible coins for rank-3 amplitude matrices
A, since §; € {0, 7 /2} implies that the rank of A is 2. [Note
that Eq. (18) implies that A has rank at least 2, so there are no
other cases remaining. ]

The formula (30) for Cyj, may not look very intuitive, but
we can describe it in a much more structured way. Let us

—e e Beicos 83
el 0r =) EC3S%S3
€01 + Esis3)
i+ b—0) B 515083

in the equation
CA =B, (26)

where A is the full-rank matrix obtained from A by replacing
one redundant column by vj‘, and similarly B is obtained by

replacing the corresponding column in B with e v;. There-
fore, we can describe the type Ila solutions in the form

Cna = BA™". 27)

Now we explicitly construct Cyy,, first assuming §; €
(0,7/2) and 85,83 € [0, 7/2). In this case the last three
columns of A are linearly independent, and we can choose

va = (deh, —cfg, —ceh, ceg),

(28)
vp = (egh, —cgh, —aeh, bcg).
We can then replace the first columns, yielding
(deh)* ¢ 0 O
i |- 0 e 0
| —(ceh)r d 0 g)’
(ceg)* O f h
e(egh)* 0 a ¢
= | —ecghyt b 0 e
B=1_.m (aeh)* 0 g O (29)
e(bcg)* h 0 0

Using the parametrization of Eq. (24) and setting E := (/7 —
1), we find the type Ila coins via Eq. (27) as

e (1 + Ecic3)
=) B, ocs
—e/@=) By cpsy 83

Ny
el(¢g ¢(’)DC16‘2S2

_ef(¢h—¢,/—¢g) Bcicr038]
099 (1 + Ecls?)
e (Pn—05) Ec3s%S3

(30)

— el bn—¢a) BEcic38152

(

define the one-dimensional trapping coins

Cy = e " |R)(L| + € |L)(R|,
Cy = &9 |UY(D| + e @9 |D)(U],

then we get that
Cia = (Cu ® C)[I + (" — 1) [yker)yker|1. (32)

Therefore, we can view a type Ila coin as a modified version
of a highly degenerate trapping coin which is a direct sum
of one-dimensional trapping coins. In order to avoid overlaps
with the type IIb coin class we require 1 # 0 for type Ila coins.

The stationary states of the coin Cyy, again come in chirally
symmetric pairs which are proportional to

10, 0) (5153 L) + c150¢" % +%=%) | D))
£10, 1) (s1c3¢" P97 |L) + 15,6 |U))
£ 11, 0) (cic2¢"” D) + 5153 |R))
+ 11, 1) (c1c2€ |U) + s1¢3¢? |R)).
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In contrast to the type I case, the probability distribution of the
above stationary states is usually nonuniform

P(0, 0) = (cos® 8, sin 8, + sin’ §; sin® 83)/2,
P(0, 1) = (cos® 8 sin® 8, + sin’ §; cos® 83)/2,
P(1,0) = (cos® 8; cos> 8, + sin §; sin® 83)/2,
P(1, 1) = (cos® §; cos® 8, + sin” 8 cos? 83)/2.

In Sec. V we identify the degenerate cases 4,, 83 € {0, %};
the degeneracy again leads to two additional stationary states,
which have the same form as above but the parameter §; <
% — &1, and some phases need to be adjusted. For example,
when 6, = §3 = 0 the coin Cy, becomes

0 0 —el O =9r=P) By sy e’i‘f’f(l + Ec%)

0 0 ei(¢r¢g)(1 + Es%) —e! @) B sy .

0 ei®—00 0 0 ;
adl 0 0 0

the two additional stationary eigenstates have eigenvalues
+¢/M/2) and are proportional to

F Py |0, 1) L) £ e sy |1,0) |D)
1L 1) (1€ [U) — 1" |R)).

The remaining three degenerate cases are similar.

2. Case IIb: Matrix A has rank 2

Let us now turn to the case when the matrix A has rank 2,
i.e., either §; = 0, implying

a=c=f=h=0, (33)
or §; = /2, implying
b=d=e=g=0. (34)

We start with the case (33), when |b| = |d| # 0 (the case
le| = |g| # 0 is completely analogous). Looking at the first
two columns of A and B in Eq. (11) we get

Cip =Cpp = Cpp = Cry = Cyy = Cry =0, (35)

b .
CDU = E =e . (36)

The unitarity of the coin C further implies that

d . A
Cup = & = @9 —. o7

Cpr =Cpr =Cyp =Cyr =0,

i.e., the coin states describing the horizontal movement
{IL), |R)} do not mix with the coin states of the vertical move-
ment {|D), |U)}. The remaining four undetermined matrix
elements mixing |L) and |R) are only restricted by unitarity.
Hence, they have to form a 2 x 2 unitary matrix C"), which
can be parametrized, for example, as

C(l) _ <CLL CLR) _ €l¢< ei"‘ cos §

e Psiné
: , (37

—ePsind e @ cosd

with 6 € [0, /2], ¢ € [0, ), and «, B, € [0, 2r). We con-
clude that the trapping coins corresponding to the case (33)

must have the form

Wt coss 0 0 =P sin §
a _ 0 0 e 0
G = 0 o7 0 0 . (38)
—@tPsing 0 0 €@ Ycoss

The coins corresponding to the second case (34) can be
found similarly. The matrix elements can be found analo-
gously to Egs. (35)-(37) by interchanging L <> D and R <
U. The corresponding coins must have the form

0 A 0 A 0 e s
c? _ 0 @t coss @ Pging 0
m =1 0 —@Psing @ Ycoss 0
eier 0 0 0
(39

As we can see, the above coins can be decomposed as the
direct sum of two one-dimensional coins, and at least one of
those two one-dimensional coins must be trapping. Conse-
quently, the stationary states are also quasi-one-dimensional
and for the coin Cl(llb) have the form of

(10,0) ID) £ 10, 1) |U))
V2

and for the coin Cl(lzb) have the form of
(10, 0) L) €7 |1, 0) |R))
7 .

In the degenerate case when both one-dimensional coins are
trapping, then both the above vertical and horizontal station-
ary states appear.

Finally, note that if ¢ = 0, then the coins C;, and Cl(li) can
be obtained from Cyy,, for §; = 0 and §; = /2, respectively,
by choosing n = 7, and §, = §3 = /4 — §/2. It is also pos-
sible to obtain instances of CI(I]b) and CI%) with ¢ # 0 from Cyyy,
but the range of attainable phases ¢ depends on the value of §.

V. BASIC DYNAMICAL PROPERTIES OF THE DIFFERENT
TYPES OF TRAPPING COINS

In this section we investigate some basic dynamical proper-
ties of the different types of trapping coins and point out some
of their characteristic differences. We focus on two things,
namely, the escaping initial states and the area covered by the
walk.

The escaping initial states |{**°) are those that avoid trap-
ping. Such states have to be orthogonal to all stationary states
|y ). As we consider the walker starting from the origin

[¥=) =10, 0) [y¢&*),

we investigate the overlap of [/¢*) with four stationary states,
namely, [v0”), 1w "), 1w SY), and [y i), since the
remaining ones do not overlap with |{*), due to the 2 x 2
support size, proven in the Appendix. We find that the coin
state [Y&°°) has to be orthogonal to all local coin states |§ @0y
of the stationary states, described in (9). That is to say, we
need (wgsc|$(”/)) =0 for all i, j € {0, 1}, which is equivalent
to

(VE1A = 0. (40)
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Note that Eq. (40) also implies that [¢&) is orthogonal to
the chiral counterparts of the stationary states |w.§t° 0y, which
are obtained by multiplying |£€%/) by (—1)"*/. Therefore,
|&*) is indeed escaping when the above states are the only
stationary eigenstates [74].

There can be more stationary eigenstates only if there are
more than two (counted with multiplicity) constant eigenval-
ues of the walk operator in momentum representation (42).
Due to chiral symmetry, the constant eigenvalues come in
+ pairs' and therefore the number of constant eigenvalues
is either 2 or 4 for trapping coins. When there are four
constant eigenvalues, the dynamics is completely trapped, and
no initial state can spread further than £1 in any direction. As
we will see, this only happens in degenerate cases: for type I
coins if and only if 6, 8, € {0, 7w /2}, for type Ila coins if and
only if &5, 83 € {0, 7 /2}, and for type IIb coins if and only if
§=m/2.

Let us now turn to the area covered by the quantum walk.
More precisely, we want to determine the set of points on the
square lattice where the probability to find the walker is not
negligibly (exponentially) small. This region is encompassed
by the peaks in the probability distribution, which propagate
in time with a constant velocity, as can be anticipated from
the ballistic nature of homogeneous quantum walks. The
velocities of the propagating peaks are determined by the
continuous spectrum of the evolution operator U [55,76,77].
The easiest way to investigate the continuous spectrum is to
employ the translational invariance of the walk and turn to the
momentum representation [47]. The Fourier transformation
diagonalizes the step operator S and turns it into a pointwise
multiplication operator given by the matrix

e ik 0 0 0
< 0 e™ 0 0
Skk) =1 o o s o @D

0 0 0 ek

where k, and k, are components of the quasimomentum? rang-
ing from —x to w. The evolution operator in the momentum
representation is block diagonal and it is given by the product

U (ky, ky) = S(ky, ky) - C. (42)

In the momentum picture, the continuous spectrum of U is
represented by the k-dependent eigenvalues of U (k,, ky). We
show that for the type I and Ila coins these eigenvalues can be
written in the form

hoa (ke ky) = P el 43)

where 8 is a constant.’

'Note that a constant eigenvalue can have nontrivial multiplicity
only for coins that are direct sums of trapping one-dimensional coins,
as we show in the Appendix.

2If the walk were on a finite torus with m sites in both directions,
then k., k, € 271{%, i, e, ”ZI }, the momentum eigenstates would
be |k, ky) = + ZT;:IO e =ik |x 'y}, and the step operator would
be Sk, ky) = (ke byl ® DS (ke k) @ 1.

3Note that for the type IIb coins the eigenvalues A. depend only
on one of the components of the quasimomentum. We treat this case

separately.

The rate of spreading of the quantum walk in different
directions is determined [55,72,77] by the properties of the
function w, which can be thought of as a dispersion relation.
We define the group velocities v, and v, in the x and y
directions by

Jw ow
Vy=—, UVy=—.
dky ok,
Asymptotically the area covered by the quantum walk cor-
responds [55] to the range of possible pairs (v, v,). The
maximal attainable group velocities can be determined by
considering the Hessian matrix of w,

Yo Yo
K k0K,

e N e (44)
ey 0ley k2

We can find these points if we express H in terms of group
velocities v, and v, and look for points where the matrix is
singular. These are the so-called caustics of the dispersion
relation [55]. The set of accessible group velocities is enclosed
by the points satisfying the condition detH = 0; we denote its
area by S. The area covered by the quantum walk after ¢ steps
is then given by St2.

A. Typel

In the case of type I coins, there is a stationary eigenstate
whose amplitudes form a full-rank matrix A (recall §; # §5);
thereby Eq. (40) has no nontrivial solution. Hence, there is
no escaping initial state. This feature was first identified in
[73] and termed strong trapping. We note that indeed the
coin matrices Cy presented in (23) coincide with the matrices
obtained in [73]. Our analysis clarifies that strong trapping
occurs if and only if the matrix A has full rank.

Let us turn to the area covered by the walk. A direct calcu-
lation of the spectrum of the evolution operator in the Fourier
picture U (k,, ky) reveals that the k-dependent eigenvalues can
be written in the form (43) with 8 = 0 and the dispersion
relation that reads

@ = — arccos[—p, cos (k, + ¢.) — py, cos (ky, + ¢,)].  (45)
Here we have used the notation

Px = COS 8] COS 8y,
Or = Qg — Pu, ¢y = n — @y. (46)

Note that w becomes constant if and only if 8, §, € {0, 7 /2}.
In these degenerate cases the coin (; is essentially a permuta-
tion matrix, so the walker is forced to cyclically move around
and the dynamics is completely trapped.

We see that the phases ¢, and ¢, do not change the overall
shape of the function w, but merely shift the location of its
maximum and minimum. Hence, they do not affect the range
of group velocities and we can set them to zero without loss
of generality, so the group velocities become

Py = sind; sin &y,

Py sink,
Uy = s
V1= (pscosk, + pycosky)?
,sink,
v Lo (47

/T = (prcosk, + pycosk,)?
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The determinant of the Hessian matrix (44) in terms of the
quasimomenta k, and k, is then readily obtained

pio;

detH = —
¢ [1 — (o, cosk, + p, cos k,)?]?

pE+pf —1

x |cos® k, + cos® ky +
PxPy

cos k, cos ky> .
Note that it depends only on cosines of the quasimomenta.
To express detH in terms of the group velocities, we take
the squares of Egs. (47) and determine cosk, and cosk, as
functions of v, and v,. The resulting expression for detH is
rather convoluted, but one can show that it vanishes for v, and
vy lying on two ellipses

2 2
Uy Uy .
&:z—i—ﬁ:l, i=12. (48)
The semiaxes of the first ellipse are given by
1+¢—%+/0+ﬁ—%f—%§
ay = \ ) 5
1—p§+p§—\/(1 —pi+ Py —4p;
by = , (49
2
while for the second ellipse they read
=" b= (50)
a) b]

Let us denote by £ the interior points of the ellipse &;. For
the points that are inside one ellipse but outside the other, the
transformation (ky, ky) — (vy, vy) is not defined. We conclude
that the range of accessible group velocities for the quantum
walk with the type I coin is given by £ N &7, We note that
the ellipses cannot coincide since for type I coins we require
81 # 8. For illustration, in Fig. 2 we show the probability
distribution of the quantum walk with a type I coin.

Let us now determine the area S of the set of attainable
group velocities, which is given by the overlap of the two
centered ellipses £ and &. We can decompose it into two
ellipse sectors of & (with the same area Sp) and two ellipse
sectors of &, (with the same area S;) (see Fig. 3). The area of
the overlap is then given by

S =28, +285, = 01a1b; + 6Lazb,, (&29)

where 6; are the parametric angles defined by the four inter-
section points (£vi™, :I:v;,“‘) of the two ellipses, i.e.,

vint vint
@, =2arcsin| = ), 6, =2arccos| = ).
aj ap

The first coordinate £v™ of the intersection points can be
computed from the length of the semiaxes as

2 12
by — by
272 272

ayby — ayby

mnt __ aas.

For illustration we show in Fig. 4 the area S as a function
of the coin parameters §; and §,. The covered area changes

FIG. 2. Probability distribution after 50 steps of the quantum
walk with the coin C; and the parameters §; = % and &, = 7. All
phases ¢; were set to zero. For this choice of parameters the ellipse
&1 becomes a circle with diameter a; = b; = 1/ /2 and the second
ellipse £ has semiaxes a, = % and b, = «/§/2. The red curves
correspond to the rescaled ellipses & where we replace v, and v, by
1 and f— The initial coin state was chosen as |Y¥¢) = %(|L} +i|D) +
i|U) + |R)), resulting in a symmetric probability distribution. Only
points with probability greater than 10~ are plotted; the covered area

accurately fits the intersection of the interiors of the two ellipses.

significantly for different pairs of §; and §,. In the case of
81 €{0,m/2} or 8, € {0, w/2} the walker does not spread
in one of the directions and the dynamics is essentially one
dimensional, so the covered area is very small. In the other ex-
treme when §; ~ §, ~ 7 /4 (remember we excluded §; = §5)
the ellipses almost become two identical circles, maximizing
the covered area.

1E
0.5+
> of
-0.51

-1H ‘ ) | |

-1 -0.5 0 0.5 1

FIG. 3. Ellipses &, (blue curve) and &, (orange curve) for the

parameters §; = % and §, = % The area of their overlap can be

3
decomposed into two ellipse sectors of &£ (blue regions) and two

ellipse sectors of & (orange regions).
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FIG. 4. Area S of the set of attainable group velocities for the
walk with the type I coin (51) as a function of the coin parameters §;
and 8.

B. Type Ila

In this case the rank of A is 3; therefore Eq. (40) has a
unique solution, which is the state described in Eq. (31), i.e.,
[YEC) = [Y5).

Let us now investigate the continuous spectrum (43). A
direct computation shows that for type Ila coins we can
set B = %” and the function w has the same structure as
Eq. (45). The phases ¢, and ¢, remain the same as for the

type I coins, while the parameters p, and p, are given by

Px = cos? 81 sin 265 sin g,

p, = sin® &, sin 28 sin g (52)

Similarly to the previous case, w becomes constant if and
only if §,, 83 € {0, 7/2} [remember that &; € (0, 7/2) and
n # 0]. These degenerate cases result in a completely trapped
dynamics, but interestingly the corresponding coin matrices
do not have permutation structure.

Since w has the same form as for the type I coin, we use
the previously derived results and find that the area covered
by the walk is again determined by the intersection of £7 and
&5 (see Fig. 5). Unlike for the type I solutions, the ellipses can
coincide. Indeed, for n = 7 and §, = 83 = % we find that the
semiaxes of £ and &, are the same and read

ay =day = 00881,

by =by; =ssind;. (53)

We note that in this case the matrix Cy, coincides (up to a
permutation due to a different ordering of the basis states of
the coin space) with the coin considered in [72], where p =
cos?8; and ¢ = 1 — p = sin® §;. Additionally, choosing 8, =
% the matrix Cyy, reduces to the 4 x 4 Grover coin explored in
detail in [60]. For this particular coin the range of attainable
group velocities is given by a circle of radius %

1
50 7 —30

FIG. 5. Probability distribution after 50 steps of the quantum
walk with the coin Cyy, and the parameters §; = %, 8, = 83 = 7, and
n = m. All phases ¢; were set to zero. For this choice the range of
attainable group velocities is given by a single ellipse & = &, with
semiaxes a; = ? and b, = % The rescaled ellipse is plotted with
the red curve. The 